

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Curruculum and Syllabi for

B.Tech (Honours / Minor) Electronics and communication Engineering with Specialization in Internet of Things

Regulations 2023 (R-2023)

B.Tech (Honours/ Minor) Electronics and communication Engineering with Specialization in Internet of Things

CURRICULUM

Bachelor of Technology (Honours/ Minor) in Electronics and Communication Engineering With specialization in "Internet of Things"

	COURSE DETAILS													
SI.	Sem	Course	Course Title	Category	P	eriod	ls	Credits	M	ax. Mar	ks			
No.	ocim	Code		Oategory	L	Т	Ρ	orcuits	CAM	ESM	Total			
1	IV	U23IXB401	Sensors Transducers Technology	PC	2	0	2	4	50	50	100			
2	V	U23IXT502	Embedded Hardware System Design ^{##}	PC	3	0	0	3	25	75	100			
3	VI	U23IXT603	Industrial Internet of Things ^{##}	PC	3	0	0	3	25	75	100			
4	VII	U23IXB704	IoT Networking and Communication	PC	2	0	2	4	50	50	100			
5	VIII	U23IXT805	Privacy and Security in IoT ^{##}	PC	3	0	0	3	25	75	100			
6	VIII	U23IXW806	2	50	50	100								
	Total 19 225 375 600													
Equi	valent	NPTEL courses	s ^{##}											

The student shall be given the option to earn 3 credits through one equivalent 12-week NPTEL course instead of any one course listed for the Honours degree programme that should be completed before the commencement of the eighth semester. Students are required to select the equivalent NPTEL course from the provided list with the approval of the Head of the Department before registering.

The available courses are as follows:

S. No	Course Code	Courses offered by the Department	Equivalent Courses recommended from NPTEL by the Department*
1	U23IXT502	Embedded Hardware System Design	 Embedded Systems Design Introduction to Embedded System Design Embedded Sensing, Actuation and Interfacing Systems
2	U23IXT603	Industrial Internet of Things	 Introduction To Internet of Things Design for Industry 4.0 and Industrial Internet of Things Electronics and IoT Design Workshop
3	U23IXT805	Privacy and Security in IoT	Optical Wireless Communications for Beyond 5G Networks and IoT

* Subject to change based on the courses offered by the NPTEL

Department	Engineering	Program	me: B.T	ech. (H	0113.)			
Semester	IV	Co	urse Cat PC	tegory:	*	End Sen TE	nester E & LE	Exam:
Course Code	U23IXB401	Pe	riods/We	ek	Credit	*	mum N	larks
		L	Т	Р	С	CAM	ESE	TM
Course Name	SENSORS TRANSDUCERS TECHNOLOGY	2	0	2	4	50	50	100
Prerequisite	Basics of Sensors and Transducers							
	On completion of the course, the s	tudents	will be a	ble to			BT N	Mapping
	CO1 Explain the working princip transducers for measurement						е	K2
	CO2 Analyze the principles, types, transducers for accurate measurements	and appli	cations	of induc	tive and		e	K2
Course Outcome	CO3 Understand the working prin transducers and smart sensor	ciples, ty	pes, an	d advai	rcements		er	K2
Outcome	CO4 Develop skills in simulating potentiometers, variable resimodel for practical measurem	g and te stances, ent applic	sting st and RT ations.	rain ga Ds usii	nuges, lo ng any	oad cells simulatio	n	K4
	CO5 Perform simulation and testing piezoelectric pressure transpractical measurement application	ducers i						K4
UNIT-I	Transducers						Por	iods:10
Strain gauges using RTD a	ansducers: Resistance Potentiometers: Un bonded and Bonded type strain g nd Thermistor – Gas flow measureme	auges. A ent using	pplication	ons: Te Anemo	mperatur meter –r	e Measu neasurer	stance rement nent of	
Strain gauges using RTD a moisture in s Magneto strict UNIT-II Inductive T Potentiomete current transo Measuremen type. Applicat	s: Un bonded and Bonded type strain g nd Thermistor – Gas flow measurement olids and wood – level measurement stive Transducers – Hall Effect Transdu Sensors ransducers: Simple inductance and rs. Linear Variable Differential Transfor ducers. Applications: Displacement m t. Capacitive Sensors: Variable area tions: Capacitive Thickness Transduce	auges. A ent using using resi cers – Ph d Mutual prmers – neasureme type – Va	pplication hot-wire istive tap oto elect inducta Variable ent - Thi iriable di	Anemo Anemo bes. Pie tric Tran ince Tr relucta ckness electric	mperatur meter –r zoelectric sducer. ansduce nce trans Measure type – V	e Measu neasuren c Transd rs – In sducers - ment – F ariable d	stance rement nent of ucers - Per duction - Eddy Position stance	CO1 iods:1(
Strain gauges using RTD a moisture in s Magneto strict UNIT-II Inductive T Potentiomete current transo Measuremen type. Applica Level Transo	s: Un bonded and Bonded type strain g nd Thermistor – Gas flow measureme olids and wood – level measurement stive Transducers – Hall Effect Transdu Sensors ransducers: Simple inductance and rs. Linear Variable Differential Transfor ducers. Applications: Displacement m t. Capacitive Sensors: Variable area tions: Capacitive Thickness Transduce ucer	auges. A ent using using resi cers – Ph d Mutual prmers – neasureme type – Va	pplication hot-wire istive tap oto elect inducta Variable ent - Thi iriable di	Anemo Anemo bes. Pie tric Tran ince Tr relucta ckness electric	mperatur meter –r zoelectric sducer. ansduce nce trans Measure type – V	e Measu neasuren c Transd rs – In sducers - ment – F ariable d	stance rement nent of ucers - Per duction - Eddy Position stance pacitive	CO1 iods:10 CO2
Strain gauges using RTD a moisture in s Magneto strict UNIT-II Inductive T Potentiomete current transo Measuremen type. Applicat Level Transd UNIT-III Smart Sens Integration o Bonding, Su	s: Un bonded and Bonded type strain g nd Thermistor – Gas flow measurement olids and wood – level measurement stive Transducers – Hall Effect Transdu Sensors ransducers: Simple inductance and rs. Linear Variable Differential Transfor ducers. Applications: Displacement m t. Capacitive Sensors: Variable area tions: Capacitive Thickness Transduce ucer Smart Sensors ors: Introduction, Mechanical-Electro f Micromachining and Microelectronic rface Micromachining, Other Microm	auges. A ent using using resi cers – Ph d Mutual prmers – neasureme type – Va rs – Capa nic Trans s. Micron	pplication hot-wire istive tap oto elect inducta Variable ent - Thi rriable di active Month sitions ir nachinin	Anemo Des. Pie tric Tran Ince Tr relucta ckness electric Disture T Sensii g: Bulk	mperatur meter –r zoelectric sducer. ansduce nce trans Measure type – V Fransduc	e Measu neasuren c Transd rs – Ind sducers - ment – F ariable di ers - Cap re of Se achining,	stance rement nent of ucers - Per duction - Eddy Position stance pacitive Per ensors, Wafer	CO1 iods:10 CO2 iods:10
Strain gauges using RTD a moisture in s Magneto strict UNIT-II Inductive T Potentiomete current transo Measuremen type. Applicat Level Transd UNIT-III Smart Sens Integration o	s: Un bonded and Bonded type strain g nd Thermistor – Gas flow measurement olids and wood – level measurement stive Transducers – Hall Effect Transdu Sensors ransducers: Simple inductance and rs. Linear Variable Differential Transfor ducers. Applications: Displacement m t. Capacitive Sensors: Variable area tions: Capacitive Thickness Transduce ucer Smart Sensors ors: Introduction, Mechanical-Electro f Micromachining and Microelectronic rface Micromachining, Other Microm ng	auges. A ent using using resi cers – Ph d Mutual ormers – heasureme type – Va rs – Capa nic Trans s. Micron hachining	pplication hot-wire istive tap oto elect inducta Variable ent - Thi iriable di icitive Mo sitions ir nachinin Technic	ons: Te Anemo bes. Pie tric Tran unce Tr relucta ckness electric bisture T bisture T Sensin g: Bulk ques, M	mperatur meter –r zoelectric sducer. ansduce nce trans Measure type – V Transduc Transduc	e Measu neasuren c Transd rs – Ind sducers - ment – F ariable di ers - Cap re of Se achining,	stance rement nent of ucers - Per duction - Eddy Position stance pacitive Per ensors, Wafer sers in	CO1 iods:10 CO2 iods:10
Strain gauges using RTD a moisture in s Magneto strict UNIT-II Inductive T Potentiomete current transo Measuremen type. Applica Level Transd UNIT-III Smart Sens Integration o Bonding, Su Micromachini UNIT-IV 1. Testing o 2. Testing o 3. Testing o 5. Testing o	s: Un bonded and Bonded type strain g nd Thermistor – Gas flow measurement olids and wood – level measurement stive Transducers – Hall Effect Transdu Sensors ransducers: Simple inductance and rs. Linear Variable Differential Transfor ducers. Applications: Displacement m t. Capacitive Sensors: Variable area tions: Capacitive Thickness Transduce ucer Smart Sensors ors: Introduction, Mechanical-Electro f Micromachining and Microelectronic rface Micromachining, Other Microm ng Analysis and testing of various Tra f Strain gauge f load cell f Pressure measurement using piezoel f LVDT. f potentiometer.	auges. A ent using using resi cers – Ph d Mutual prmers – heasureme type – Va rs – Capa nic Trans s. Micron hachining	pplication hot-wire istive tap oto elect inducta Variable ent - Thi iriable di incitive Mon sitions in nachinin Technic s Using	Anemo bes. Pie tric Tran unce Tr relucta ckness electric bisture T Sensin g: Bulk ques, M	mperatur meter –r zoelectric sducer. ansduce nce trans Measure type – V Transduc Transduc	e Measu neasuren c Transd rs – Ind sducers - ment – F ariable di ers - Cap re of Se achining,	stance rement nent of ucers - Per duction - Eddy Position stance pacitive Per ensors, Wafer sers in	CO1 iods:10 CO2 iods:10 CO3
Strain gauges using RTD a moisture in s Magneto strict UNIT-II Inductive T Potentiomete current transo Measuremen type. Applica Level Transd UNIT-III Smart Sens Integration o Bonding, Su Micromachini UNIT-IV 1. Testing o 2. Testing o 3. Testing o 5. Testing o	s: Un bonded and Bonded type strain g nd Thermistor – Gas flow measurement olids and wood – level measurement stive Transducers – Hall Effect Transdu Sensors ransducers: Simple inductance and rs. Linear Variable Differential Transfor ducers. Applications: Displacement m t. Capacitive Sensors: Variable area tions: Capacitive Thickness Transducer ucer Smart Sensors ors: Introduction, Mechanical-Electro f Micromachining and Microelectronic rface Micromachining, Other Microm ng Analysis and testing of various Tra f Strain gauge f load cell f Pressure measurement using piezoel f LVDT.	auges. A ent using using resi cers – Ph d Mutual ormers – heasureme type – Va rs – Capa nic Trans s. Micron hachining ansducer ectric tran	pplication hot-wire istive tap oto elect inducta Variable ent - Thi inable di indictive Mon sitions in nachinin Technic s Using	ons: Te Anemo bes. Pie tric Tran ance Tr relucta ckness electric bisture T Sensii g: Bulk ques, M	mperatur meter –r zoelectric sducer. ansduce nce trans Measure type – V Transduc Transduc	e Measu neasuren c Transd rs – Ind sducers - ment – F ariable di ers - Cap re of Se achining,	stance rement nent of ucers - Per duction - Eddy Position stance bacitive Per ensors, Wafer sers in Per	CO1 iods:10 CO2 iods:10 CO3
Strain gauges using RTD a moisture in s Magneto strict UNIT-II Inductive T Potentiomete current transo Measuremen type. Applica Level Transd UNIT-III Smart Sens Integration o Bonding, Su Micromachini UNIT-IV 1. Testing o 2. Testing o 3. Testing o 6. Testing o 3. Testing o 6. Testing o 3. Testing o 5. Testing o 3. Testing o 5. Testing o 3. Testing o 5. Testing o	s: Un bonded and Bonded type strain g nd Thermistor – Gas flow measurement olids and wood – level measurement stive Transducers – Hall Effect Transdu Sensors ransducers: Simple inductance and rs. Linear Variable Differential Transfor ducers. Applications: Displacement m t. Capacitive Sensors: Variable area tions: Capacitive Thickness Transduce ucer Smart Sensors ors: Introduction, Mechanical-Electronic f Micromachining and Microelectronic rface Micromachining, Other Microm ng Analysis and testing of various Tra f Strain gauge f load cell f Pressure measurement using piezoel f LVDT. f potentiometer. f Variable resistance	auges. A ent using using resi cers – Ph d Mutual ormers – heasurement type – Va rs – Capa nic Trans s. Micron hachining ansducer ectric trar	pplication hot-wire istive tap oto elect inducta Variable ent - Thi riable di indictive Mo sitions in nachinin Technic s Using insducers	ons: Tel Anemo bes. Pie tric Tran unce Tr relucta ckness electric bisture T Sensin g: Bulk ques, M Simula	mperatur meter –r zoelectrid sducer. ansduce nce trans Measure type – V fransduc ng, Natu Microma licro mil tion	e Measu neasuren c Transd rs – Ind sducers - ment – F ariable di ers - Cap re of Se achining,	stance rement nent of ucers - Per duction - Eddy Position stance bacitive Per ensors, Wafer sers in Per	

Textbooks

- 1. S.Vijayachitra, Transducers engineering, 2nd Edition, Prentice Hall of India, 2016.
- 2. Patranabis, D., "Sensors and Transducers", 2nd Edition, Prentice Hall India Pvt. Ltd, 2010.
- 3. S.Vijayachitra, Transducers engineering, 2nd Edition, Prentice Hall of India, 2016.
- 4. Randy Frank, Artech House Publications, "Understanding Smart Sensors", Second Edition.

Reference Books

- 1. Jacob Fraden, "Handbook of modern sensors physics, designs and applications", 5th edition, Springer, 2015.
- 2. PavelRipka, "Modern sensors handbook", ISTE Ltd, 1st edition, 2007.
- 3. Renganathan S., "Transducer Engineering" -Allied Publishers Limited, 2003
- 4. Doebelin E.A., "Measurement Systems: Applications and Design", 5th Edition, Tata McGraw Hill Publishing Company, New Delhi

Web References

- 1. https://lecturenotes.in/search/Resistive%20Transducers%3A
- 2. https://lecturenotes.in/search/inductive%20and%20%20Capacitive%20Sensors
- 3. https://lecturenotes.in/search/Transducers%20and%20Smart%20Sensors

COs/POs/PSOs Mapping

COs					Prog	gram O	utcome	es (POs	i)				Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	2	1	1	1	-	1	1	1	-	-	-	-	1	-	-
2	2	1	1	2	-	1	1	1	-	-	-	-	1	-	-
3	2	1	1	2	-	1	1	1	-	-	-	-	1	-	-
4	2	3	3	3	3	1	1	1	-	-	-	-	1	-	-
5	2	3	3	3	3	1	1	1	-	-	-	-	1	-	-

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Methods

Assessment		Continue	ous Assess	ment N	farks	(CAM) – M a	iximur	n 50 N	larks	##End Semester Examinatio n (ESE) Marks (Theory)	Total Marks (CAM+ ESE)
	Continuous Assessment (Theory) Continuous Assessment (Practical) Theory Theory Theory Theory <t< th=""><th></th><th></th></t<>											
	End Semester End Semester											
Portion for Test	1 ½ Units	1 ½ Units	All 3 Units							Practical Exam	All 3 Units	
	MCQ Test	MCQ Test	Written Exam							Practical Exam	Written Exam	
Assessment Methodology	Analytic Questi	tions for al Course ons for Course										
Duration of the Test	1 hour 30 Min	1 hour 30 Min	3 hours							3 hours	3 hours	
Marks	50	50	75	5		15	10	5	30*	30	75 (To be weighted for 50 Marks)	
Weightage of CAM	2.5 2.5 2.5 2.5 10 *To be weighted for 10 Marks 10 30											
CAM / ESE Marks		1	C	AM Ma	urks =	10+10-	+30=50)	1	1	ESE Marks = 50	100

Department	Electronics and Communication Engineering	Programi	me: B.T	ech. (Ho	ons.)			
Semester	v	Cοι	urse Cat PC	egory:		End Seme 1	ester Exa E	am:
Course Code	11231XT502	Pe	riods/We	eek	Credit		num Ma	rks
		L	Т	P	C	CAM	ESE	TM
	EMBEDDED HARDWARE SYSTEM DESIGN	3	0	0	3	25	75	100
Prerequisite	(Common t Microcontroller and its Applications	o ALL Bra	inches)					
	On completion of the course, the stu	udents w	ill be ab	le to			BT M	apping
P L L L L L L L L L L L L L L L L L L L	CO1 To Comprehend the application challenges related to Embedded	d Systems	;	-			ľ	(2
Course Outcomes	CO2 To Understand CPU processing microcontroller for a particular a			s; selec	t a micro	processo	r/	(2
	CO3 To Illustrate the program optimiz	zation and	l perforn	nance a	nalysis		ł	(3
F	CO4 To Enumerate the pros and con					ms		(3
	CO5 To Design and implement algori	thms for E	Embedd	ed syste	ems			{ 4
	TRODUCTION							ods:09
Embedded Pr	/stems – Design Metrics – Optimiza ocessors – General Purpose Proces ction Set Processor							CO1
UNIT-II DI	EVICES AND COMMUNICATION BUS	ES					Peric	ds:09
	to I/O Devices – Types - Sync ns - Serial Communication – I2C, I							
UNIT-III RI	EAL TIME OPERATING SYSTEMS						Peric	ods:09
	stems – Issues in Real Time Computing Classification of Tasks – Task Periodic							
	PU AND BUS BASED COMPUTER SY	STEMS					Peric	ods:09
Traps, Co-Pro	stem Design Process -Programming Ir ocessors, Memory System Mechanism ole-Data Compressor							
UNIT-V PF	ROGRAM DESIGN AND ANALYSIS						Peric	ods:09
	or Embedded Programs, Models of Fechniques, Program Optimization, Prog					d Loading	, Basic	CO5
LecturePe	eriods:45 Tutorial Periods: -	Pra	ctical P	eriods:	-	Total P	eriods:	45
McGra	mal, Embedded systems Architecture, w Hill Education, India Wolf, Computers as components: Prin	Ū	Ū.	0			•	
edition Reference Bo	•				U.	,		,
	Heath, Embedded Systems Design, 20	13. 3rd eo	lition. F	DN Serie	es. Unite	d States		
2. Jane V	V. S. Liu, Real time systems, 2013, repr							
Neb Referenc								
	www.course.org/in/articles/embedded- en.wikipedia.org/wiki/embedded_syster							
3. https://	www.udacity.com/course/embedded-s	ystems						
	www.techtarget.com/embedded -system							
5. https://	www.youtube.com/embedded-systems							

COs/POs/PSOs Mapping

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	2	1	1	1	-	1	1	1	-	1	1	1	1	3	1	
2	2	1	1	2	-	1	1	1	-	1	1	1	1	3	1	
3	2	1	1	2	-	1	1	1	-	1	1	1	1	3	1	
4	2	3	3	3	3	1	1	1	-	1	2	3	1	3	3	
5	2	3	3	3	3	1	1	1	-	1	2	3	1	3	3	

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Methods

		Continuou	s Assessm	1)	End Semester	Total Marks	
	CAT 1	CAT 2	Model ^{##}	Assignment [#]	Attendance##	Examination ^{##}	(CAM+ESE)
Portion for Test	2 Units	2 Units	All 5 Units			All 5 Units	
	MCQ Test	MCQ Test					
Assessment Methodology	Analytical Questions	50 Questions for analytical Course 75 Questions for Theory Course		Individual Task #		Written Exam	
Duration of the Test	1 hour 30 Minutes	1 hour 30 Minutes	3 hours			3 hours	
Test Marks	50	50	75	20	5	75	
Weightage for CAM	5	5 5 5 5 5					
CAM / ESE Marks	CAM Marks = 25					ESE Marks = 75	100

*Maximum duration of one week for the course / workshop

Department	Electronics and Communication Engineering	Progra	mme: B		· · · ·			
Semester	VI		rse Cate PC			T		
Course Code	U23IXT603	Pe	riods/W	eek	Credit		imum Ma	arks
		L	Т	P	C	CAM	ESE	ТМ
Course Name	INDUSTRIAL INTERNET OF THINGS	3	0	0	3	25	75	100
Prerequisite	Internet of Things communication proto	cols						
	On completion of the course, the stu	dents w	vill be a	ble to			BT M	apping
	CO1 Comprehend to the modern techn	ologies	need fo	r IOT			ł	(2
Course	CO2 Interpret basic industrial processe	es and its	s referer	nce arch	nitecture		ł	(2
Outcomes	CO3 Illustrate the security aspect of IIC)T					ł	(3
	CO4 Handle real time security issues in	n IIOT					ł	(2
	CO5 Analyse the various industrial IOT	applica	tions				ł	(3
UNIT-I	INTRODUCTION AND ARCHITECTUR	E OF IO	Т				Peric	ods:09
	characteristics of IoT, Physical Desig wireless sensor network, Cloud computin							C01
UNIT-II	INDUSTRIAL INTERNET OF THINGS	<u> </u>					T	ds:09
	on, Industrial IoT: Business Model and Layers: IIoT Sensing, IIoT Processing, IIc						Models,	CO2
UNIT-III	IIOT ANALYTICS AND SECURITY					_	Perio	ods:09
	alytics and Software Defined Networks							CO3
Programming, UNIT-IV	Data Management with Hadoop, Cloud C	Computir	ng in Ilo	T, Fog C	Computing	g in lloT		
-	INDUSTRIAL IOT APPLICATION pplication in industries, Inventory man	agaman	t and (, villeur	control [Diant ca		ods:09
	facturing industry, automotive industry, m			quality (50Hti 01, F	ant sa	iety anu	CO4
UNIT-V	SMART WORLD						Peric	ods:09
Integration of S Virtual Reality.	s and IIOT, Smart grid, Hybrid renewa Sensors in Robots and Artificial Intelliger	ice, 5G	Technol	ogy, Hu	iman-Mao	chine Int	eraction,	CO5
LectureP Textbooks	eriods:45 Tutorial Periods: -	Prae	ctical P	eriods:	-	Total F	Periods:	45
1. S. Misr CRC P 2. Alasda	r Gilchrist, "Industry 4.0: The Industria							
3. Dieter	SS, 2016. Uckelmann, Mark Harrison, Michahelle: ər, 2011.	s, Floria	n (Eds)), "Arch	itecting t	he Inter	net of T	hings",
Reference Bo								
1. Vijay N 2014	ladisetti and Arshdeep Bahga, "Interne	t of Thi	ngs (A	Hands-	on-Appro	ach)",1s	t Edition	, VPT
2. Francis	a daCosta, "Rethinking the Internet of Th tion, Apress Publications, 2013	nings: A	Scalab	le Appro	oach to C	Connecti	ng Every	rthing"
3. Giacon	no Veneri; Antonio Capasso, "Hands-on l astructure using Industry 4.0", Packt Pub			et of Thi	ings: crea	ate a pov	werful Ind	dustria
4. "Indust	rial Internet of Things: Cyber manufactu g Song, Danda B. Rawat (Springer), 201	uring Sy		by Sab	ina Jesc	hke, Ch	ristian B	recher
TIOUDIT	g cong, banda b. Ranat (opinigor), zor							

Web References

- 1. https://nptel.ac.in/courses/106/105/106105195/
- 2. https://global.hitachi-solutions.com/blog/industry-4-0-technologies
- 3. https://www.i-scoop.eu/industry-4-0/
- 4. https://ottomotors.com/blog/5-industry-4-0-technologies
- 5. https://www.machinemetrics.com/blog/industry-4-0-technologies

COs/POs/PSOs Mapping

COs		Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	2	1	1	-	-	1	-	-	-	-	-	-	1	-	-	
2	2	1	1	-	-	1	-	-	-	-	-	-	1	-	-	
3	2	1	1	-	-	1	-	-	-	-	-	-	1	-	-	
4	2	3	3	-	3	1	-	-	-	-	-	-	1	-	-	
5	2	3	3	-	3	1	-	-	-	-	-	-	1	-	-	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Methods

		Continuou	s Assessm	ent Marks (CAN	1)	End Semester	Total Marks
	CAT 1	CAT 2	Model ^{##}	Assignment [#]	Attendance##	Examination ^{##}	(CAM+ESE)
Portion for Test	2 Units	2 Units	All 5 Units			All 5 Units	
	MCQ Test	MCQ Test					
Assessment Methodology	Analytical Questions	50 Questions for Analytical Course 75 Questions for Theory Course		Individual Task #		Written Exam	
Duration of the Test	1 hour 30 Minutes	1 hour 30 Minutes	3 hours			3 hours	
Test Marks	50	50	75	20	5	75	
Weightage for CAM	5	5 5 5 5					
CAM / ESE Marks			CAM Mark	xs = 25		ESE Marks = 75	100

*Maximum duration of one week for the course / workshop

Department	Electronics and Communication	Progra	mme: B.T	ech. (F	lons.)			
Semester	VII	Co	ourse Cat PC	egory:			nester Ex E & LE	kam:
Course Coo	de U23IXB704	Peri	ods/Weel	(Credit	Μ	laximum	Marks
		L	Т	Р	С	CAM	ESE	ТМ
Course Nar	Me IOT NETWORKING AND COMMUNICATION	2	0	2	4	50	50	100
Prerequisite	Basics of Sensors and Transducers	and Basic	of Comm	nunicati	ons			
	On completion of the course, the s	tudents w	ill be abl	e to			BT M	lapping
	CO1 Understand IoT data process	ing and de	vice desi	gn cons	sideratior	าร		K2
Course	CO2 Identify key IoT connectivity to	echnologie	es and the	eir appli	cations			K2
Outcomes	CO3 Analyze communication proto	ocols for co	onstrained	d loT de	evices			K2
	CO4 Implement MATLAB simulation	ons for IoT	interope	ability.				K 3
	CO5 Analyze IoT device managem		•					K2
UNIT-I	IOT PROCESSING TOPOLOGIES AND	TYPES					Peri	ods:10
Topologies,	at, Structured data, Unstructured data, IoT Device Design and Selection Cons ision making, Offloading considerations							
UNIT-II	IOT CONNECTIVITY TECHNOLOGIES						Perio	ods:10
	of IoT Connectivity Technologies, IEEE D, NFC, DASH7, Z-Wave, Weightless, Sig						Wireles	³ CO2
UNIT-III	IOT COMMUNICATION TECHNOLOGIE	ES					Perio	ods:10
	d nodes, Constrained networks, Types nfrastructure protocols, Discovery Protoc							
Manageme	nt, Semantic Protocols							
UNIT-IV	MATLAB-BASED IOT INTEROPERABIL	LITY					Peri	ods:15
Experiment Experiment Experiment Experiment Experiment	1: Data Format Conversion in IoT System 2: Simulation of IoT Connectivity Techno 3: Edge Processing Implementation for Io 4: Connectivity Range Validation for IoT 5: IoT Device Data Security Implementat 6: IoT Device Energy Consumption Mode	logies oT Data Devices tion eling						CO4
UNIT-V	MATLAB-BASED IOT DEVICE MANAG	EMENT					Peri	ods:15
Experiment Experiment Experiment Experiment	1: Battery Life Estimation for IoT Devices 2: Edge Data Aggregation in IoT Network 3: IoT Data Annotation with Semantic Me 4: Simulation of Actuator Control in IoT E 5: IoT Device Localization Using Signal S 6: Firmware Update Management in IoT	ks etadata Devices Strength						CO5
Lecture	Periods: 30 Tutorial Periods: -	Prac	tical Peri	ods: 3	0	Total I	Periods:	60
Textbooks				~ ~				
	ip Mishra, Anandarup Mukherjee, Arijit Ro	oy: Introdu	ction to I	JT, Car	mbridge	Universi	ty Press.	
Tecl 2. Rajł Mor 3. Sha Spri	id Hanes, Gonzalo Salgueiro, Patrick Gro hnologies, Protocols, and Use Cases for t kumar Buyya, Selim Nehar, and Sanjay gan Kaufmann, 2014. ncang Li and Daoqiang Zhang, "Fog (nger, 2018. S. MacDonald, "Architecting the Interne	the Interne Ranka, " Computing	et of Thing Internet o g: Conce	gs," Cisc of Thing ots, Fra	co Press gs: Princ amework	, 2017. iples an s, and	nd Parac Technol	ligms," ogies,"
5. Mich	o. nael Miller, "The Internet of Things: How S thbrush Can Change the World," Que Pul			ars, Ho	me Appl	iances, a	and Ever	n Your

Web References

- 1. https://www.cisco.com/c/en/us/solutions/internet-of-things/overview.html
- 2. https://aka.ms/iot-beginners
- 3. https://www.ibm.com/internet-of-things
- 4. https://www.intel.com/content/www/us/en/internet-of-things/overview.html
- 5. https://zigbeealliance.org/

COs/POs/PSOs Mapping

COs	Program Outcomes (POs)													Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
1	2	3	2	2	3	1	-	-	1	-	1	-	3	2	1		
2	3	2	2	3	3	1	-	-	1	-	1	-	2	3	2		
3	2	3	2	3	3	1	-	-	1	-	1	-	3	3	2		
4	3	2	3	2	2	1	-	-	1	-	1	-	3	2	2		
5	3	2	3	2	3	1	-	-	1	-	1	-	2	3	2		
	Correlation Level: 1 - Low 2 - Medium 3 - High									High							

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Methods

Assessment		Contin	uous Asses	sment M	arks ((CAM) –	Maxim	um 50 1	Marks		#End Semester Examination (ESE) Marks (Theory)	Total Marks (CAM+ ESE)
	Cor	ntinuous Ass	essment (T	heory)		С	ontinuo	ous Asse	essment	(Practical)		
	CAT 1	CAT 2	Model ^{##}	Attendance ^{##}	Total	Conduction of Practical	Report	Viva	Total	End Semester Examination (ESE) Marks (Practical)		
Portion for Test	1 ½ Units	1 ½ Units	All 3 Units							Exam	All 3 Units	
Assessment	MCQ Test	MCQ Test	Written Exam							Practical Exam	Written Exam	
Methodology	Analytica	tions for al Course for Theory 1rse										
Duration of the Test	1 hour 30 Minutes	1 hour 30 Minutes	3 hours							3 hours	3 hours	
Marks	50	50	75	5		15	10	5	30*	30	75 (To be weighted for 50 Marks)	
Weightage of CAM	2.5	2.5	2.5	2.5	10		e weigh 10 Mark		10	30		
CAM / ESE Marks	CAM Marks =10+10+30=50									ESE Marks = 50	100	

Department		ctronics and Communication ineering	Progra	Programme: B.Tech. (Hons.)								
Semester	mester VIII Course Category: PC End								m: TE			
Course Code	1122	IXT805	Pei	riods/W	eek	Credit	Ma	aximum Marks				
	023		L	Т	Р	С	CAM	ESE	TM			
Course Name	Course NamePRIVACY AND SECURITY IN IOT300325											
Prerequisite	Inter	net of Things communication pro	tocols									
	On completion of the course, the students will be able to											
	CO1	Understand the fundamental sec	curity issu	ues in Ir	nternet of	[:] things		BT Mapping K2				
Course	CO2	Demonstrate different Framew Device	orks and	d Hard	ware Ar	chitectur	e of loT	ł	K2			
Outcomes	CO3	CO3 Analyse different IoT Protocols and Layer Functioning										
	CO4	Protect and secure the network connecting IoT devices to back and										
	CO5	Demonstrate different auther certificates, biometrics, etc	ntication	mech	anism s	such a	s digita	K3				
UNIT-I FU	NDAM	IENTALS OF IOT ECOSYSTEM						Peri	ods:09			
		now to design an IoT system, Ha			e and ne	etwork s	ecurity re	lated to	CO1			
UNIT-II OV	ERVIE	EW OF CLOUD COMPUTING AN	ID ITS S	ERVICE	ES			Perio	ds:09			
Cloud Comput types; IaaS, Pa		ndamental: Cloud computing de	efinition,	private	, public	and hyb	orid cloud	. Cloud	CO2			
UNIT-III CH	ALLE	NGES IN CLOUD COMPUTING						Perio	ds:09			
Benefits and ch the cloud.	alleng	es of cloud computing - Public vs	. Private	clouds,	Role of	virtualiza	ation in er	abling	CO3			
UNIT-IV SE	CURIT	Y CONCEPTS IN CONTEXT TO	loT DE	VICES				Peri	ods:09			
Security Conce	pts: Co	onfidentiality, privacy, integrity, au	uthenticat	tion, no	n-repudia	ation, Vir	tualizatio	n	CO4			
UNIT-V Io1	SECU	JRITY THREATS AND COUNTE	RMEAS	URES				Peri	ods:09			
		cks: Guest hopping, attacks on the ion into the virtualized file structu						ol of the	CO5			
LecturePeriod	s:45	Tutorial Periods: -	Pract	tical Pe	riods: -		Total P	eriods:	45			
2. Drew V Reference Boo	an Dur ks	oT Security: Practical guidebook en, Brian Russell, "Practical Inter The Internet of Risky Things", O'F	net of Th	ings Se	ecurity", F	Packt, 1s		2016.				

COs/POs/PSOs Mapping

COs		Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	2	3	2	-	-	1	-	-	1	-	1	-	3	-	-	
2	3	2	2	-	-	1	-	-	1	-	1	-	2	-	-	
3	2	3	2	-	-	1	-	-	1	-	1	-	3	-	-	
4	3	2	3	-	-	1	-	-	1	-	1	-	3	-	-	
5	3	2	3	-	-	1	-	-	1	-	1	-	2	-	-	

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Methods

		Continuou	1)	End Semester	Total Marks		
	CAT 1	CAT 2 Model ^{##} Assignment [#] Attendance		Attendance##	Examination ^{##}	(CAM+ESE)	
Portion for Test	2 Units	2 Units	All 5 Units			All 5 Units	
	MCQ Test	MCQ Test					
Assessment Methodology	Analytical Questions	tions for Course 75 for Theory ırse	Written Exam	Individual Task #		Written Exam	
Duration of the Test	1 hour 30 Minutes	1 hour 30 Minutes	3 hours			3 hours	
Test Marks	50	50	75	20	5	75	
Weightage for CAM	5	5 5 5		5	5		
CAM / ESE Marks				ESE Marks = 75	100		

*Maximum duration of one week for the course / workshop

Department	Electronics and Communication Engineering	Programme: B.Tech. (Hons.)								
Semester	VIII	C	ourse C P	Category C	/:	End Semester Exam: PW				
Course Code	U23IXW806	Pe	riods/W	eek	Credit	M	aximum	Marks		
Course Code	0231744806	L	Т	Р	С	CAM	ESE	ТМ		
Course Name	PROJECT / MODEL MAKING	0	0	0	2	50	50	100		

The individual student will carry out any project/ model making in the field of Internet of Things. The student must identify the area of their specialization of Internet of Things and the project will be implemented under the supervision of a faculty assigned by the Head of the Department.

Students are expected to choose real world or relevant problems and apply the engineering principles learned, to solve the problem through building prototypes or simulations or writing codes or establishing processes/synthesis/correlations etc.

The progress of the work will be monitored and assessed as per guidelines. A minimum 20 pages report must be prepared and submitted at the end of eighth semester after completion of the project work.

Assessment Guidelines

Student will be evaluated by the Internal and External Members based on the below criteria.

Criteria	Internal	External
Identification of Problem Domain	5	5
Study of Existing Systems and establishing clear objectives	10	10
Planning of project	10	10
Proper Documentation and Technical Writing	10	10
Presentation and Response to questions	15	15
Total Marks	50	50

