Description:

The R Foundation describes R as "a language and environment for statistical computing and graphics." But, if you're familiar with R, you probably know it's a lot more than that.Created by Ross Ihaka and Robert Gentleman at the University of Auckland in New Zealand in the 1990s as a statistical platform for their students, open-source R has been extended over the decades by thousands of user-created libraries. So what is R today? It's many things:

- R is data analysis software: Data scientists, statisticians, and analysts—anyone who needs to make sense of data, really—can use R for statistical analysis, data visualization, and predictive modeling.
- R is a programming language: An object-oriented language created by statisticians, R provides objects, operators, and functions that allow users to explore, model, and visualize data.
- R is an environment for statistical analysis: Standard statistical methods are easy to implement in R, and since much of the cutting-edge research in statistics and predictive modeling is done in R, newly developed techniques are often available in R first.
- R is an open-source software project: R is free and, thanks to years of scrutiny and tinkering by users and developers, has a high standard of quality and numerical accuracy.
 R's open interfaces allow it to integrate with other applications and systems.
- R is a community: The R project leadership has grown to include more than 20 leading statisticians and computer scientists from around the world, and thousands of contributors have created add-on packages. With two million users, R boasts a vibrant online community.

Course Outcome:

- Analyze data find relative patterns to predict outcomes
- Analyze continuous data in varying scenarios
- Analyze and find patterns in data by applying various techniques
- Expert in Confirmatory Data analysis
- Analyze continuous data by applying various testing, regression and correlation scenarios
- Implement key components specific to text mining and analytics aided by the real world datasets and text mining
- Demonstrate expert knowledge in predicting outcomes

Session Plan :

SI.No.	Session	Topics	Content
1	Section 1	Statistics	Introduction to data Science
	Session 1	Theory	Scope of Data Science
2	Session 2	Statistics	Application of Data Science
		Theory	Introduction to Statistics
3	Session 3	Statistics	Graphical and Tabular Descriptive Statistics
		Theory	Probability
4	Session 4		Probability distribution
		Statistics	Hypothesis Testing
		Theory	• Statistical Testing (Z-Test, Chi-Square, T-Tests,
			etc)
	Session 5	R	Introduction Analytical Tool (R)
5		Programming,	Introduction to Data Analysis
		data handling	• Introduction to R programming
		and Basic	R environment and Basic commands
		Statistics	
		R	Data Handling in R
		Programming,	• Importing Data
6	Session 6	data handling	• Sampling
		and Basic	Data Exploration
		Statistics	Creating calculated fields
		D	Sorting and removing duplicates
	Session 7	R Dro grommin g	Basic Descriptive Statistics
7		Programming, data handling	Population and sample
/		and Basic	• Measure of central tendency
		Statistics	Measure of dispersion
		R	
	Session 8	Programming,	Reporting and Data Validation
8		data handling	Percentiles and Quartiles
		and Basic	• Box plots and outlier detection
		Statistics	• Creating graphs and reporting
	Session 9	Project 1: Data	• Project on data handling
		exploration,	Data exploration
9		validation and	 Data validation
		Cleaning	 Missing values identification
		Project	
	Session 10	Project 1: Data	
10		exploration,	Outlier identification
10		validation and	Data cleaning
		Cleaning	Basic descriptive statistics
	Session	Project	1 Degregation Apply sig
11	Session 11	Regression Analysis	1. Regression Analysis
	11	Analysis	Correlation

		0 - T • • • •	
		&Logistic	Simple regression model
		Regression	• R-Square
		Model	Multiple regression
		Building	Multi collinearity
			Individual variable impact
		Regression	
		Analysis &	Multiple regression
12	Session 12	Logistic	
12		Regression	Multi collinearity
		Model	Individual variable impact
		Building	
		Regression	
		Analysis &	2. Logistic Regression
13	Session	Logistic	Need of logistic regression
15	13	Regression	Logistic regression models
		Model	• Validation of logistic regression models
		Building	
		Regression	
	Session 14	Analysis &	• Multiple collingerity in logistic regression
1.4		Logistic	Multiple collinearity in logistic regression
14		Regression	• Individual impact of variables
		Model	Confusion matrix
		Building	
		Decision Tree & Model Selection	1. Decision Trees
	Session 15		Segmentation
			• Entropy
15			Building decision trees
			Validation of trees
			• Fine tuning and prediction using trees
			2. Model Selection and Cross validation
	Session 16	Decision Tree & Model Selection	How to validate a model?
			What is best model?
			• Types of data
16			• Types of errors
			• The problem of over fitting
			• The problem of under fitting
			Bias variance of tradeoff
			Cross validation
			Boot strapping
17		Project 2:	Objective
	Session	Predictive	Model building-1
	17	Modeling	• Model building-2
		Project	Model validation
18	Session	Project 2:	Variable selection
	18	Predictive	Model calibration
	10		

		Modeling	Out of time validation
		Project	
19	Session 19	Neural Network, SVM and Random Forest	 Neural Networks Neural network intuition Neural network and vocabulary Neural network algorithm Math behind neural network algorithm Building the neural networks Validating the neural network model Neural network applications Image recognition using neural networks
20	Session20	Neural Network, SVM and Random Forest	 2. SVM Introduction The decision boundary with largest margin SVM-The large margin classifier SVM-algorithm The kernel trick Building SVM model Conclusion