EMBEDDED SYSTEM DESIGN USING ARDUINO

Description:

Embedded system basically is a computer system that is designed to pull off a few or one specific function, more often than not in real-time computing constraints. "ARDUNIO" most widely used technique of embedded systems. An Arduino is an assembled board of Atmel 8-bit AVR microcontroller with additional components to facilitate programming. An important aspect of the Arduino is the standardized way in which the connectors are exposed, providing a facility to the CPU board to get connected to a variety of interchangeable add-on modules known as shields. The hardware consists of an open-source hardware board designed around an 8-bit Atmel AVR microcontroller. The software consists of a standard programming language compiler and a boot loader that executes on the microcontroller

Course Outcome:

The students will:

- Learn the basics of electronics, including reading schematics (electronics diagrams)
- Learn how to prototype circuits with a breadboard
- Learn the Arduino programming language and IDE
- Acquire Program basic Arduino examples
- Prototype circuits and connect them to the Arduino
- Program the Arduino microcontroller to make the circuits work
- Connect the Arduino microcontroller to a serial terminal to understand communication and stand-alone use
- Explore the provided example code and online resources for extending knowledgeabout the capabilities of the Arduino microcontroller

Session Plan:

Si no	Session	Topics
1	Session 1	Embedded Systems Introduction.
		Different Microcontroller Architectures (CISC, RISC, ARISC).
2	Session 2	Internal Resources & Hardware Chips in Details.
		History of AVR Microcontrollers and Features
3	Session 3	Memory Architectures (RAM/ROM).
		Introduction to ARDUINO
4	Session 4	ARDUINO History and Family
		Programming in Embedded -C
5	Session 5	Concepts of C language.
		General Hardware Interfacings:
6	Session 6	LEDS and Switches
7	Session 7	Seven Segment Display and Multi Segment Display
8	Session 8	Relays (AC Appliance Control) and LCD
9	Session 9	Buzzer, IR Sensors and other digital sensors
10	Session 10	Matrix Keypad, ACD Interfacing and PWM
11	Session 11	UART Communication (MCU to PC)
		UART Communication (MCU to MCU)
		Graphical LCD
12	Session 12	RTC Based Real Time Clock
		Various Real Time Sensor Interfacing:
		Accelerometer/Gyro/Tilt Sensor
13	Session 13	Analogue Sensors (Temperature, Gas & Alcohol)
		UART Based Sensors (Color Sensor, Humidity Sensor)
14	Session 14	Concepts Of Robotics using ARDUINO
		• Different types of motors (DC, Gear, SERVO)
15	Session 15	Motor Speed Angle & Direction Control
16	Session 16	Study of Robotic ARM & Robotic Car
17	Session 17	• Project
18	Session 18	Project
19	Session 19	Project
20	Session 20	Project Evaluation