

Department of Electronics and Communication Engineering

CURRICULUM & SYLLABI

B.Tech - Electronics and Communication Engineering

B.TECH. ELECTRONICS AND COMMUNICATION ENGINEERING (Regulations-2023)

CURRICULUM & SYLLABI

Approval from Statutory Bodies
Passed in 6 th BoS Meeting held on July 21, 2023
Approved in 6 th Academic Council Meeting held on August 22, 2023

VISION AND MISSION OF THE INSTITUTE

VISION

To be globally recognized for excellence in quality education, innovation, and research for the transformation of lives to serve the society.

MISSION

To provide comprehensive academic system that amalgamates the cutting edge-technologies with best practices
To foster value-based research and innovation in collaboration with industries and institutions globally for creating intellectuals with new avenues
To inculcate the employability and entrepreneurial skills through value and skill-based training
To instil deep sense of human values by blending societal righteousness with academic professionalism for the growth of society

VISION AND MISSION OF THE DEPARTMENT

VISION

Facilitate academic excellence and research among Electronics and Communication Engineers to meet the Global needs with high competence and ethical professionalism

MISSION

M1: Academic Excellence	To impart learning skills to meet the global challenges in the field of Electronics and Communication Engineering
M2: Research and Innovation	To provide excellence in research and innovation through multidisciplinary specialization
M3: Employability and Entrepreneurship	To enhance inter and intrapersonal skills among students to make them employable and entrepreneurs
M4: Ethics	To inculcate the significance of human values and professional skills to serve the society

PROGRAMME OUTCOMES (POs)

PO1: Engineering knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis:

Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions:

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage:

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society:

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability:

Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

PO8: Ethics:

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and teamwork:

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication:

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance:

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning:

Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM EDUCATIONAL OBCTIVES (PEOs)

PEO1: Technical Knowledge

Graduates will be able to develop an insightful combination of modern electronics and communication technology through technical knowledge.

PEO2: Research and Development

Enhance analytical and thinking skills to develop initiatives and innovative ideas for research and development, industry, and societal requirements.

PEO3: Leadership

Inculcate the qualities of teamwork as well as social, interpersonal and leadership skills and adapt to the changing professional environments in the fields of engineering and technology.

PEO4: Professional Ethics

Motivate graduates to become good human beings and responsible citizens for the overall welfare of the society.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Domain Knowledge

Ability to understand the concepts in Electronics and Communication Engineering and to apply to different fields, such as Consumer Electronics, Communications, Signal Processing, etc.

PSO2: Embedded System Design

Ability to design a system based on the technical knowledge gained for embedded applications in electronics and communications engineering.

PSO3: Professional Competency

Ability to select cutting-edge engineering hardware and software tools to solve complex problems in Electronics and Communication Engineering

STRUCTURE FOR UNDERGRADUATE ENGINEERING PROGRAM

S.No	Category	Credits
1	Humanities and Social Sciences including Management courses	15
2	Basic Science courses	20
3	Engineering Science courses	28
4	Professional core courses	66
5	Professional Elective courses	18
6	Open Elective Courses	9
7	Project work, seminar, and internship	13
8	Ability Enhancement Courses	
9	Mandatory Courses	
	Total Credits	169

SCHEME OF CREDIT DISTRIBUTION – SUMMARY

S.	Category		Credits per Semester									
No	Calegory		II	ш	IV	v	VI	VII	VIII	credits		
1	Humanities and Social Sciences including Management courses	3	5	1	1	2			3	15		
2	Basic Science courses		4	5	4					20		
3	Engineering Science courses		8	4	4	4				28		
4	Professional core courses		4	13	11	8	15	11		66		
5	Professional Elective courses				3	3	3	3	6	18		
6	Open Electives					3	3	3		9		
7	Project work and internship					1	1	3	8	13		
8	Ability Enhancement Courses*											
9	9 Mandatory Courses*											
	Total Credits	22	21	23	23	21	22	20	17	169		

* AEC and MC are not included for CGPA calculation

HONOURS DEGREE PROGRAMME:

The student is permitted to opt for earning an honours degree in the same discipline of engineering in addition to the degree in his/her own discipline. To earn an honours degree the student is required to earn an additional 18 - 20 credits (over and above the total 169 credits prescribed in the curriculum) starting from fourth semester onwards by completing 5 additional courses offered in respective semesters. A student is eligible to exercise this option if he/she has passed all the courses offered up to third semester in the first attempt itself and has earned a CGPA / GPA of not less than 8.0.

The prescribed courses offered for Honours degree are given in Annexure -D

SEMESTER-I

SI.			0-1	P	erio	ds	One ditte	N	lax. Mar	ks
No.	Course Code	Course Title	Category	L	Т	Ρ	Credits	CAM	ESM	Total
Theor	У									
1	U23MATC01	Engineering Mathematics - I	BS	3	1	0	4	25	75	100
2	U23BSTC01	Physical Science for Engineers	BS	3	0	0	3	25	75	100
3	U23ESTC01	Basics of Civil and Mechanical Engineering	ES	3	0	0	3	25	75	100
4	U23EETC01	Electrical Technology	ES	3	0	0	3	25	75	100
5	U23ECT101	Circuits and Networks	PC	3	0	0	3	25	75	100
Theor	Theory cum Practical									
6	U23ENBC01	Communicative English - I	HS	2	0	2	3	50	50	100
Practi	cal									
7	U23ESPC02	Design Thinking and Idea Laboratory	ES	0	0	2	1	50	50	100
8	U23EEPC01	Electrical Technology Laboratory	ES	0	0	2	1	50	50	100
9	U23ECP101	Circuits and Networks Laboratory	PC	0	0	2	1	50	50	100
Ability	y Enhancement C	Course								
10	U23AEC1XX	Certification Course – I	AEC	0	0	4	-	100	-	100
Manda	atory Course									
11	U23ECM101	Induction Program – (UHV-I)	MC	3/	Nee	ks	-	-	-	-
	Total								575	1000

SEMESTER-II

SI.	Course Code		Catanami	P	erio	ds	Credito	М	ax. Marl	s
No.	Course Code	Course Title	Category	L	Т	Ρ	Credits	CAM	ESM	Total
Theor	У									
1	U23MATC02	Engineering Mathematics-II	BS	3	1	0	4	25	75	100
2	U23ESTC02	Engineering Mechanics	ES	3	0	0	3	25	75	100
3	U23CSTC01	Programming in C	ES	3	0	0	3	25	75	100
4	U23ECT202	Electron Devices	PC	3	0	0	3	25	75	100
5	U23HSTC01	Universal Human Values - II	HS	2	0	0	2	25	75	100
Theor	y cum Practical									
6	U23ENBC02	Communicative English - II	HS	2	0	2	3	50	50	100
Practi	cal									
7	U23ESPC03	Engineering Graphics using AutoCAD	ES	0	0	2	1	50	50	100
8	U23CSPC01	Programming in C Laboratory	ES	0	0	2	1	50	50	100
9	U23ECP202	Electron Devices Laboratory	PC	0	0	2	1	50	50	100
Ability	y Enhancement	Course								
10	U23ECC2XX	Certification Course – II	AEC	0	0	4	-	100	-	100
Manda	atory Course									
11	U23ECM202	Sports and Yoga or NSS/NCC	MC	0	0	2	-	100	-	100
			21	525	575	1100				

2EINI	ESTER-III									
SI.	Course Code	Course Title	Category	P	erio	ds	Credits	М	ax. Marl	(S
No.	Course Coue	Course The	Category	L	Τ	Ρ	Oreans	CAM	ESM	Total
Theor	у		1		1	1	1	1	1	1
1	U23MATC03	Probability and Statistics	BS	3	1	0	4	25	75	100
2	U23ADTC01	Programming in Python	ES	3	0	0	3	25	75	100
3	U23ECT302	Electronic Circuits	PC	3	0	0	3	25	75	100
4	U23ECT304	Sensors and Its Applications	PC	3	0	0	3	25	75	100
5	U23ECT305	Measurement and Instrumentation	PC	3	0	0	3	25	75	100
Theor	y cum Practical									
6	U23ECB301	Engineering Electromagnetics	PC	3	0	2	3	50	50	100
Practi	cal									
7	U23ENPC01	General Proficiency - I	HS	0	0	2	1	50	50	100
8	U23MAPC01	Engineering Mathematics Laboratory	BS	0	0	2	1	50	50	100
9	U23ADPC01	Programming in Python Laboratory	ES	0	0	2	1	50	50	100
10	U23ECP303	Electronic Circuits Laboratory	PC	0	0	2	1	50	50	100
Ability	y Enhancement	Course								
11	U23ECC3XX	Certification Course – III	AEC	0	0	4	-	100	-	100
12	U23ECS301	Skill Enhancement Course – I : PCB Design	AEC	0	0	2	-	100	-	100
Manda	atory Course									
13	U23ECM303	Climate Change	MC	2	0	0	-	100	-	100
		Total					23	675	625	1300

SEMESTER-III

SEMESTER-IV

SI.	Course Code	Course Title	Catagony	P	erio	ds	Credits	Max. Marks		
No.	Course Code	Course Title	Category	L	Τ	Ρ	Credits	CAM	ESM	Total
Theory				r						
1	U23MATC04	Numerical Methods and Optimization	BS	3	1	0	4	25	75	100
2	U23CSTC03	Data Structures	ES	3	0	0	3	25	75	100
3	U23ECT406	Operational Amplifiers and Applications	PC	3	0	0	3	25	75	100
4	U23ECT407	Digital Circuits	PC	3	0	0	3	25	75	100
5	U23ECE4XX	Professional Elective – I	PE	3	0	0	3	25	75	100
Theory	y cum Practical						•		•	
6	U23ECB402	Signals and Systems	PC	3	0	0	3	50	50	100
Practio	cal	•								•
7	U23ENPC02	General Proficiency -II	HS	0	0	2	1	50	50	100
8	U23CSPC02	Data Structures Laboratory	ES	0	0	2	1	50	50	100
9	U23ECP404	Integrated Circuits Laboratory	PC	0	0	2	1	50	50	100
10	U23ECP405	Digital Circuits Laboratory	PC	0	0	2	1	50	50	100
Ability	Enhancement	Course					•	•	•	
11	U23ECC4XX	Certification Course – IV	AEC	0	0	4	-	100	-	100
12	U23ECS302	Skill Enhancement Course- II: Repair and Maintenance of Electronics Equipment's	AEC	0	0	2	-	100	-	100
Manda	tory Course	• • •	·			-			-	
13	U23ECM404	Right to Information and Good Governance	MC	2	0	-	-	100	-	100
	Total							675	625	1300

SEIVI	SEMESIER-V												
SI.	Course Code	Course Title	Catagory	Pe	erio	ds	Credits	М	ax. Marl	(S			
No.	Course Code	Course The	Category	L	т	Ρ	Credits	CAM	ESM	Total			
Theory	y												
1	U23HSTC02	Research Methodology	HS	2	0	0	2	25	75	100			
2	U23ITTC03	Programming in JAVA	ES	3	0	0	3	25	75	100			
3	U23ECTC01	Microcontrollers and Interfacing	PC	3	0	0	3	25	75	100			
4	U23ECT508	Analog and Digital Communication	PC	3	0	0	3	25	75	100			
5	U23ECE5XX	Professional Elective – II	PE	3	0	0	3	25	75	100			
6	U23ECO5XX	Open Elective - I	OE	3	0	0	3	25	75	100			
Practio	cal												
7	U23ITPC03	Programming in JAVA Laboratory	ES	0	0	2	1	50	50	100			
8	U23ECP506	Analog and Digital Communication Laboratory	PC	0	0	2	1	50	50	100			
9	U23ECPC01	Microcontrollers and Interfacing Laboratory	PC	0	0	2	1	50	50	100			
Projec	t Work												
10	U23ECW501	Micro Project	PW	0	0	2	1	100	-	100			
Ability	/ Enhancement	Course											
11	U23ECC5XX	Certification Course – V	AEC	0	0	4	-	100	-	100			
Manda	atory Course												
12	U23ECM505	Essence of Indian Traditional Knowledge	MC	2	0	0	-	100	-	100			
		Total					21	600	600	1200			

SEMESTER-V

SEMESTER-VI

SI.	Course Code	Course Title	Catagory	P	erio	ds	Credits	Max. Marks		
No.	Course Code	Course fille	Category	L	Т	Ρ	Credits	CAM	ESM	Total
Theor	У	•					•			
1	U23ECTC02	Embedded Systems Design	PC	3	0	0	3	25	75	100
2	U23ECT609	Digital Signal Processing	PC	3	0	0	3	25	75	100
3	U23ECT610	Digital VLSI System Design	PC	3	0	0	3	25	75	100
4	U23ECE6XX	Professional Elective - III	PE	3	0	0	3	25	75	100
5	U23ECO6XX	Open Elective - II	OE	3	0	0	3	25	75	100
Theor	y cum Practical		·							
6	U23ECB603	Control System Engineering	PC	3	0	0	3	50	50	100
Practi	cal		·							
7	U23ECPC02	Embedded System Design Laboratory	PC	0	0	2	1	50	50	100
8	U23ECP607	Digital Signal Processing Laboratory	PC	0	0	2	1	50	50	100
9	U23ECP608	Digital VLSI System Design Laboratory	PC	0	0	2	1	50	50	100
Proje	ct Work			1				1		T
10	U23ECW602	Mini Project	PW	0	0	2	1	100	-	100
Abilit	y Enhancement	Course								
11	U23ECC6XX	Certification Course – VI	AEC	0	0	4	-	100	-	100
Mand	atory Course									
12	U23ECM606	Gender Equality	MC	2	0	-	-	100	-	100
		Total					22	625	575	1200

SEMESTER-VII

SI.	Course Code	Course Title	Catagony	P	erio	ds	Credits	М	ax. Mark	s
No.	Course Code	Course The	Category	L	Т	Ρ	Credits	CAM	ESM	Total
Theor	у			•						•
1	U23ECTC03	Internet of Things	PC	3	0	0	3	25	75	100
2	U23ECT711	RF and Microwave Communication	PC	3	0	0	3	25	75	100
3	U23ECT712	Wireless Communication	PC	3	0	0	3	25	75	100
4	U23ECE7XX	Professional Elective - IV	PE	3	0	0	3	25	75	100
5	U23ECO7XX	Open Elective - III	OE	3	0	0	3	25	75	100
Practi	cal									
7	U23ECPC03	Internet of Things Laboratory	PC	0	0	2	1	50	50	100
8	U23ECP709	High Frequency Communication Laboratory	PC	0	0	2	1	50	50	100
Projec	ct Work									
10	U23ECW703	Project Phase – I	PW	0	0	4	2	50	50	100
11	U23ECW704	Internship/ Inplant training	PW	0	0	2	1	100	-	100
			20	375	525	900				

SEMESTER-VIII

SI.	Course Code	Course Title		Periods			Cradita	Max. Marks		
No.	Course Code Course Title Category		L	T	Ρ	Credits	CAM	ESM	Total	
	Theory									
1	U23HSTC03	Entrepreneurship and Business Management	HS	3	0	0	3	25	75	100
2	U23ECE8XX	Professional Elective - V	PE	3	0	0	3	25	75	100
3	U23ECE8XX	Professional Elective - VI	PE	3	0	0	3	25	75	100
		Proj	ect Work							
10	U23ECW805	Project Phase – II	PW	0	0	16	8	50	100	150
	Total						17	125	325	450

Annexure – A PROFESSIONAL ELECTIVE COURSES

Profes	sional Elective -	-I (Offered in Semester IV)
SI. No.	Course Code	Course Title
1	U23ECE401	Aircraft Communication and Navigation Systems
2	U23ECE402	Computer Architecture and Interfacing
3	U23ECE403	Data Networks
4	U23ECE404	Electronic Design Automation Tools
5	U23ECE405	System on Chip Design
Profes	sional Elective -	- II (Offered in Semester V)
SI. No	Course Code	Course Title
1	U23BMEC02	Wearable Technology
2	U23ECE506	Cloud Computing
3	U23ECE507	Hardware Description Languages
4	U23ECE508	Mobile Communication
5	U23ECE509	Vehicular Communication
		-III (Offered in Semester VI)
SI. No	Course Code	Course Title
1	U23ICEC02	Soft Computing Techniques
2	U23ECE6010	Digital Image and Video Processing
3	U23ECE6011	Real Time Operating system
4	U23ECE6012	Network Information Security
5	U23ECE6013	Fog Computing
		IV (Offered in Semester VII)
SI. No	Course Code	Course Title
1	U23ICEC03	Intelligence Robotics Systems
2	U23ECEC01	Satellite Communication
3	U23ECE7014	Advanced Wireless Communication Techniques
4	U23ECE7015	Embedded Processors
5	U23ECE7016	Single Board Computer
		-V (Offered in Semester VIII)
	Course Code	Course Title
1	U23ITEC05	Augmented Reality and Virtual Reality
2	U23ECE8017	Optical Communication
3	U23ECE8018	Radar Engineering
4	U23ECE8019	Automotive Electronic Systems
5	U23ECE8020	Nano Technology for Energy Sustainability
		VI (Offered in Semester VIII)
SI. No	Course Code	Course Title
1	U23ECEC02	Wireless Sensor Networks
2	U23ECEC03	High Speed Networks
3	U23ECE8021	Wireless Broad Band Networks
4	U23ECE8022	Software Defined Radio
5	U23ECE8023	LTE and 5G Communication Systems

Annexure – B OPEN ELECTIVE COURSES

Open	Elective- I (Offere	d in Semester V/ VI)	
S. No	Course Code	Course Title	Permitted Departments
1	U23ECOC01	Engineering Computation with MATLAB	EEE, ICE, MECH, CIVIL, CCE, BME, AI&DS, Mechatronics
2	U23ECOC02	Consumer Electronics	EEE, ICE, CSE, MECH, IT, CIVIL, CCE, BME, Mechatronics, FT
Open	Elective- II (Offere	ed in Semester VII)	
1	U23ECOC03	IoT and its Applications	EEE, ICE, CSE, MECH, IT, CIVIL, CCE, FT
2	U23ECOC04	RFID System Design and Testing	EEE, ICE, CSE, MECH, IT, CIVIL, CCE, BME, Mechatronics

COMMON COURSE OFFERED BY ECE

SI. No.	Course Code	Course Title	Courses Offered
1	U23ECTC01	Microcontrollers and Interfacing	ECE, CCE
2	U23ECPC01	Microcontrollers and Interfacing Laboratory	ECE, CCE
3	U23ECTC02	Embedded Systems Design	ECE, CCE, ICE
4	U23ECPC02	Embedded System Design Laboratory	ECE, CCE, ICE
5	U23ECTC03	Internet of Things	ECE, CCE
6	U23ECPC03	Internet of Things Laboratory	ECE, CCE
7	U23ECEC01	Satellite Communication	ECE, CCE
8	U23ECEC02	Wireless Sensor Networks	ECE, IT
9	U23ECEC03	High Speed Networks	ECE, CCE
10	U23ECEC04	VLSI Systems	EEE, BME

Annexure-C ABILITY ENHANCEMENT COURSES–(A) CERTIFICATION COURSES

S. No	Course Code	Course Title	Certified By
1	U23ECCX01	Adobe Photoshop	Adobe
2	U23ECCX02	Adobe Animate	Adobe
3	U23ECCX03	Adobe Dreamweaver	Adobe
4	U23ECCX04	Adobe After Effects	Adobe
5	U23ECCX05	Adobe Illustrator	Adobe
6	U23ECCX06	Adobe InDesign	Adobe
7	U23ECCX07	Autodesk AutoCAD -ACU	Autodesk
8	U23ECCX08	Autodesk Inventor - ACU	Autodesk
9	U23ECCX09	Autodesk Revit - ACU	Autodesk
10	U23ECCX10	Autodesk Fusion 360 - ACU	Autodesk
11	U23ECCX11	Autodesk 3ds Max - ACU	Autodesk
12	U23ECCX12	Autodesk Maya - ACU	Autodesk
13	U23ECCX13	Cloud Security Foundations	AWS
14	U23ECCX14	Cloud Computing Architecture	AWS
15	U23ECCX15	Cloud Foundation	AWS
16	U23ECCX16	Cloud Practitioner	AWS
17	U23ECCX17	Cloud Solution Architect	AWS
18	U23ECCX18	Data Engineering	AWS
19	U23ECCX19	Machine Learning Foundation	AWS
20	U23ECCX20	Robotic Process Automation / Medical Robotics	Blue Prism
21	U23ECCX21	Advance Programming Using C	CISCO
22	U23ECCX22	Advance Programming Using C ++	CISCO
23	U23ECCX23	C Programming	CISCO
24	U23ECCX24	C++ Programming	CISCO
25	U23ECCX25	CCNP Enterprise: Advanced Routing	CISCO
26	U23ECCX26	CCNP Enterprise: Core Networking	CISCO
27	U23ECCX27	Cisco Certified Network Associate - Level 2	CISCO
28	U23ECCX28	Cisco Certified Network Associate- Level 1	CISCO
29	U23ECCX29	Cisco Certified Network Associate- Level 3	CISCO
30	U23ECCX30	Fundamentals Of Internet Of Things	CISCO
31	U23ECCX31	Internet Of Things	CISCO
32	U23ECCX32	Java Script Programming	CISCO
33	U23ECCX33	NGD Linux Essentials	CISCO
34	U23ECCX34	NGD Linux I	CISCO
35	U23ECCX35	NGD Linux II	CISCO
36	U23ECCX36	Advance Java Programming	Ethnotech

S. No	Course Code	Course Title	Certified By
37	U23ECCX37	Android Programming / Android Medical App Development	Ethnotech
38	U23ECCX38	Ansys	Ethnotech
39	U23ECCX39	Catia	Ethnotech
40	U23ECCX40	Communication Skills for Business	Ethnotech
41	U23ECCX41	Coral Draw	Ethnotech
42	U23ECCX42	Data Science Using R	Ethnotech
43	U23ECCX43	Digital Marketing	Ethnotech
44	U23ECCX44	Embedded System Using C	Ethnotech
45	U23ECCX45	Embedded System With IOT	Ethnotech
46	U23ECCX46	English For IT	Ethnotech
47	U23ECCX47	Entrepreneurship And Business Plan	Ethnotech
48	U23ECCX48	Estimation And Current Practices	Ethnotech
49	U23ECCX49	Financial Planning, Banking and Investment Management	Ethnotech
50	U23ECCX50	Foundation Of Stock Market Investing	Ethnotech
51	U23ECCX51	Machine Learning / Machine Learning for Medical Diagnosis	Ethnotech
52	U23ECCX52	IOT Using Python	Ethnotech
53	U23ECCX53	Plaxis	Ethnotech
54	U23ECCX54	Soft Skills, Verbal, Aptitude	Ethnotech
55	U23ECCX55	Software Testing	Ethnotech
56	U23ECCX56	Solar And Smart Energy System With IOT	Ethnotech
57	U23ECCX57	Solid Edge	Ethnotech
58	U23ECCX58	Solid works	Ethnotech
59	U23ECCX59	Staad Pro	Ethnotech
60	U23ECCX99	Total Station	Ethnotech
61	U23ECCX60	Hydraulic	Festo
62	U23ECCX61	PLC	Festo
63	U23ECCX62	Numatics	Festo
64	U23ECCX63	Agile Methodologies	IBM
65	U23ECCX64	Block Chain	IBM
66	U23ECCX65	Devops	IBM
67	U23ECCX66	Artificial Intelligence	ITS
68	U23ECCX67	Cloud Computing	ITS
69	U23ECCX68	Computational Thinking	ITS
70	U23ECCX69	Cyber Security	ITS
71	U23ECCX70	Data Analytics	ITS
72	U23ECCX71	Databases	ITS
73	U23ECCX72	Java Programming	ITS
74	U23ECCX73	Networking	ITS
75	U23ECCX74	Python Programming	ITS

S. No	Course Code	Course Title	Certified By
76	U23ECCX75	Web Application Development (HTML, CSS, JS)	ITS
77	U23ECCX76	Network Security	ITS & Palo alto
78	U23ECCX77	MATLAB	MathWorks
79	U23ECCX78	Azure Fundamentals	Microsoft
80	U23ECCX79	Azure AI (AI-900)	Microsoft
81	U23ECCX80	Azure Data (DP -900)	Microsoft
82	U23ECCX81	Microsoft 365 Fundamentals (SS-900)	Microsoft
83	U23ECCX82	Microsoft Security, Compliance and Identity (SC-900)	Microsoft
84	U23ECCX83	Microsoft Power Platform (PI-900)	Microsoft
85	U23ECCX84	Microsoft Dynamics Fundamentals 365 – CRM	Microsoft
86	U23ECCX85	Microsoft Excel	Microsoft
87	U23ECCX86	Microsoft Excel Expert	Microsoft
88	U23ECCX87	Securities Market Foundation	NISM
89	U23ECCX88	Derivatives Equinity	NISM
90	U23ECCX89	Research Analyst	NISM
91	U23ECCX90	Portfolio Management Services	NISM
92	U23ECCX91	Cyber Security	Palo alto
93	U23ECCX92	Cloud Security	Palo alto
94	U23ECCX93	PMI – Ready	PMI
95	U23ECCX94	Tally – GST & TDS	Tally
96	U23ECCX95	Advance Tally	Tally
97	U23ECCX96	Associate Artist	Unity
98	U23ECCX97	Certified Unity Programming	Unity
99	U23ECCX98	VR Development	Unity

Annexure – D HONORS DEGREE

Bachelor of Technology (Honors) in Electronics and Communication Engineering With specialization in "Internet of Things"

			COURSE I	DETAILS							
SI.	Semester	Course Code	Course Title	Category	Р	erio	ds	Credits	Max. Marks		
No.	Gemester	Course Coue	oourse mie	Category	L	Т	Ρ	oreans	CAM	ESM	Total
Theo	ry			•							
1	IV	U23ECH401	Sensors and Actuators	PC	3	1	0	4	25	75	100
2	V	U23ECH502	Edge Computing	PC	3	1	0	4	25	75	100
3	VI	U23ECH603	Embedded Device Drivers	PC	3	1	0	4	25	75	100
4	VII	U23ECH704	Privacy and Security in IoT	PC	3	1	0	4	25	75	100
5	VIII	U23ECH805	Industrial IoT	PC	3	1	0	4	25	75	100
			Total					20	125	375	500
			Equivalent NPT	EL courses	##						
			Sensors and Actuators					3			
			Foundation of Cloud IoT	Edge ML				3	12 Weeks		
1	IV-VII	U23ECHN01	Introduction to Industry 4	.0				3			
			Industrial Internet of Thin	igs				3		Course	
			Introduction to Internet of	f Things				3			

^{##} The student shall be given an option to earn 3 credits through one equivalent 12 weeks NPTEL course instead of any one course listed for honours degree programme that should be completed before the commencement of eighth semester. The equivalent courses are subject to change based on its availability as per NPTEL course list.

SEMESTER-I

SI.	Course Code	ourse Code Course Title	Catamany	P	Periods		Credite	Max. Marks		
No.	Course Code	Course little	Category	L	Т	Ρ	Credits	CAM	ESM	Total
Theor	у	·	·							
1	U23MATC01	Engineering Mathematics - I	BS	3	1	0	4	25	75	100
2	U23BSTC01	Physical Science for Engineers	BS	3	0	0	3	25	75	100
3	U23ESTC01	Basics of Civil and Mechanical Engineering	ES	3	0	0	3	25	75	100
4	U23EETC01	Electrical Technology	ES	3	0	0	3	25	75	100
5	U23ECT101	Circuits and Networks	PC	3	0	0	3	25	75	100
Theor	y cum Practical	·	·							
6	U23ENBC01	Communicative English - I	HS	2	0	2	3	50	50	100
Practi	cal	·	·							
7	U23ESPC02	Design Thinking and Idea Lab	ES	0	0	2	1	50	50	100
8	U23EEPC01	Electrical Technology Laboratory	ES	0	0	2	1	50	50	100
9	U23ECP101	Circuits and Networks Laboratory	PC	0	0	2	1	50	50	100
Ability	/ Enhancement C	Course								
10	U23AEC1XX	Certification Course – I	AEC	0	0	4	-	100	-	100
Manda	atory Course		•				•			
11	U23ECM101	Induction Program – (UHV-I)	MC	31	Nee	ks	-	-	-	-
		Total	•				22	425	575	1000

Regulations 2023

Department		Mathematics Programme: B.Tech.								
Semester		I Course Category: BS *End Semester Exam								
Course			P	eriods	Week	Credit	М	aximum	Marks	
Code		U23MATC01 L T P				С	CAM	ESE	ГМ	
Course Name	ENGI	NEERING MATHEMATICS – I	3	1	-	4	25	75	100	
		(Common to All Brar	nches	Excep	ot CSBS	S)		•		
Prerequisite	Basi	c Mathematics								
	On co	mpletion of the course, the stude	ents v	vill be a	able to			BT Ma (Highes		
_	C01	Understand the concept of Eigen values and Eigen vectors, Diagonalization of a Matrix							K3	
Course Outcomes	CO2	Solve higher order differential equations							K3	
Outcomes	CO3	Understand the different types of partial differential equations						К3		
	CO4	Know about the Applications of double and triple integrals							K3	
	CO5	Gain the knowledge about Vector Calculus and its Applications							K3	

UNIT – I	MATRICES	Peric	ods:12						
	rix – Systems of Linear Equations – Characteristic equation – Cayley Hamilton The and Eigen vectors of a real Matrix–Diagonalization of Matrices.	eorem	CO1						
UNIT – II DIFFERENTIAL EQUATIONS (HIGHER ORDER) Perio									
Linear Differe higher order v	ntial equations of higher order with constant coefficients – Euler's linear equat ith variable coefficients –Method of Variation of parameters.	ion of	CO2						
UNIT – III	FUNCTIONS OF SEVERAL VARIABLES	Perio	ods:12						
	ives – Total derivatives – Maxima of two variables and Minima of two variab	oles –	CO3						
UNIT – IV	MULTIPLE INTEGRALS	Perio	ds:12						
	als – Change of order of integration (Cartesian form). Applications: Areas as a c sian form) – Volume as a triple integral (Cartesian form)	louble	CO4						
UNIT – V	VECTOR CALCULUS	Perio	ds:12						
Gradient – Di Properties (St proofs).	vergence and Curl – Directional derivatives – Irrotational and Solenoidal vector finatement only) – Gauss Divergence Theorem and Stokes Theorem applications (w	elds – vithout	CO5						
Lecture P	eriods:45 Tutorial Periods:15 Practical Periods: - Total Pe	riods:6	60						

Text Books

- M.K. Venkataraman, "Engineering Mathematics, The National Publishing Company, Madras, 2016.
 N. P Bali and Manish Goyal, "A Text Book of Engineering Mathematics", Lakshmi Publications, New Delhi, 9th Edition, 2018.
 S. Narayanan and T.K. Manicavachagom Pillay," Differential Equations and Its Applications", Viswanathan.S, Printers & Publishers Pvt Ltd, 2009.

Reference Books

1.	G. Balaji, "Matrices and Calculus (Engineering Mathematics – I)" Balaji Publications, 9 th Edition, 2023
2.	Dr. A. Singaravelu, "Engineering Mathematics – I", Meenakshi publications, Tamil Nadu, 2019.
3.	Erwin Kreyszig, "Advanced Engineering Mathematics ", Wiley, 10 th Edition, 2019.
4.	B.V.Ramana," Higher Engineering Mathematics", Tata McGraw – Hill, New Delhi, 6 th Edition, 2018.
5.	C W. Evans, "Engineering Mathematics", A Programmed Approach, 3 rd Edition, 2019.

Web F	References
1.	http://www.yorku.ca/yaoguo/math1025/slides/chapter/kuttler-linearalgebra –slides- systems of equation-handout.pdf
2.	http://www.math.cum.edu/~wn0g/2ch6a.pdf
3.	https://nptel.ac.in/courses/122/104/122104017/
4.	https://nptel.ac.in/courses/111/106/111106051/
5.	https://nptel.ac.in/courses/111/108/111108081/

COs/POs/PSOs Mapping

COs	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PSO1	PSO2	PSO3		
1	3	2	1	-	2	1	1	-	-	-	-	1	3	-	-
2	3	2	1	1	-	1	1	-	-	-	-	1	3	-	-
3	3	2	1	1	-	1	1	-	-	-	-	1	3	-	-
4	3	2	1	1	-	1	1	-	-	-	-	1	3	-	-
5	2	2	1	-	-	-	1	-	-	-	-	1	3	-	-

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

		Continu	ous Asse	End Semester	Total		
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Eve		Marks
Marks	1	0	5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department		Physics and Chemistry			Prog	ramme	: B.Tec	h.			
Semester		I	Course			;	*End Se	emester			
						Credi		ype: TE aximum			
Course		U23BSTC01	L	JUS/W	P	Crear		ESE	TM		
Code Course		PHYSICAL SCIENCE FOR	L	I	Г		CAIVI	ESE			
Name		ENGINEERS	3	-	-	3	25	75	100		
	L	(Common to a	II Branche	s)	L	1					
Prerequisite	Physic	cs of 12 th standard or equivalent / Ch	nemistry of	^ະ 12 th ເ	stand	ard or e	quivalen	it.			
	On co	mpletion of the course, the studer	nts will be	able	to			BT Ma			
	CO1	Understand the basic of prope superconductors.	rties of r	nagne	etic,	dielectri	c and	····)	Highest Level) K2		
	CO2	Identify the wave nature of the wave functions	particles,	physi	cal s	significa	nce of	K	3		
Course Outcome	CO3	CO3 Understand the basic principles of laser and fiber optics communication									
	CO4	CO4 Understand and familiar with the water treatment.									
	CO5	Understand the electrode potential reactions and uses of various batte		sibility	' in el	lectroch	emical	K	2		
CO6 Understand the specific operating condition under which corrosion K2									2		
		SECTION A -	PHYSICS	;							
UNIT - I 🛛 MA	GNET	IC, DIELECTRIC AND SUPERCON	DUCTING	MAT	ERIA	LS		Per	riods: 8		
and Soft mag equation-Freq	gnetic uency	etic materials, Ferromagnetism- Do materials-ferrites-Dielectric materia effects on polarization-Dielect terials and their properties.	als-Types		olariza		Langev		e CO1		
		M MECHANICS						Per	riods: 7		
		roglie Wavelength - Uncertainty Prin			-				1		
- Schrödinger Dimensional E		Equation - Time Dependent - Time	Independe	ent - A	ppiic	ation to	Particle	in a One) CO2		
1		ND FIBER OPTICS						Per	riods: 7		
		of Laser - Spontaneous and Stim	nulated Er	nissio	ns -	Einstei	n's Coef	i			
GaAs Laser F	iber O	and Laser Action –components of ptics - Principle and Propagation of	f light in op	otical f	iber ·						
acceptance ar	ngle - T	Гуреs of optical fibers (material, refra	active index	x, moo	de)						
		SECTION B – C	HEMISTR	۲Y							
UNIT-IV W	ATER	AND ITS TREATMENT						Per	riods: 8		
turbidity, pH, osmosis-disad (phosphate, co demineralizatio	hardne Ivantag olloidal on and	impurities, Water quality paramete ess, alkalinity, TDS, COD and BC ges of using hard water in boiler - Tre , sodium aluminate and Calgon cond zeolite process.	DD. Desal reatment of ditioning) a	ination f boile ind Ex	n of r feed	brackis d water:	h water: Internal	Revers: treatmer	e nt CO4		
		OCHEMICAL CELLS AND STORA						<u>i</u>	riods: 8		
cell and its r hydrogen, cal storage battery	measur omel a y- nicke	e electrode potential, standard electro rement. Nernst equation. Electroly and Ag/AgCl. Batteries and fuel co el-cadmium battery- fuel cell H_2 - O_2 f	/te concer ells: Type:	ntrations of I	n ce batter	ll. Refe	rence e	lectrodes attery-lea	³⁻ d CO5		
	RROS	ION ion - factors – types – chemical, e	alactrocher	nical	orro	sion (ar	alvania	I	riods: 7		
aeration), corr sacrificial anoo	rosion de met	control – material selection and d hod and impressed current cathodic odic coating. Metal cladding, Electi	lesign asp c method.	ects - Uses	- ele of inł	ctroche nibitors,	mical pr metallic	otection coating	– –CO6		
Lecture Pe	eriods	: 45 Tutorial Periods:-	Practic	al Pe	riods	5:-	Total	Periods:	45		

Lecture Periods: 45	Tutorial Periods:-	Practical Periods:-	Total Periods: 45

Text Books

- 1. V Rajendran, "Engineering Physics", 2nd Edition, TMH, New Delhi 2011.
- S.S Dara "A text book of Engineering Chemistry" 15th Edition, 2021. S.Chand Publications.
 C.Jain, Monica Jain, —" Engineering Chemistryll" 17thEd. DhanpatRai Pub. Co., NewDelhi, (2015).

Reference Books

- R.Murugeshan, "Modern Physics", S. Chand &Co, New Delhi 2006. 1.
- 2. William D Callister Jr., "Material Science and Engineering", 6th Edition, John Wiley and sons, 2009.
- 3. Jain & Jain "Engineering chemistry", 23rd Edition, DhanpatRai Publishing Company. 2022
- 4. Mars Fontana "Corrosion Engineering", July 2017
- 5. JinaRedlin, "Handbook of Electrochemistry", March 28, 2005

Web References

- 1. https://www.sciencedaily.com/terms/materials_science.htm.
- 2. https://www.acs.org/content/acs/en/careers/college-to-career/chemistry-careers/materials science.html.
- 3. https://study.com/academy/lesson/semiconductors-superconductors-definition-properties.html
- 4. https://mechanicalc.com/reference/engineering-materials
- 5. http://ndl.ethernet.edu.et/bitstream/123456789/89589/1/%5BPerez N.%5D Electrochemistry and corr osion%28BookZZ.org%29.pdf

COs/POs/PSOs Mapping

COs	Program Outcomes (POs)												Program-Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	2	2	2	-	-	-	-	-	-	-	-	-	-	-
2	3	2	3	2	-	-	-	-	-	-	-	-	-	-	-
3	3	2	3	2	-	-	-	-	-	-	-	-	-	-	-
4	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
5	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
6	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
	Correlation Level: 1 - Low												2 - Mec	lium, 3 ·	– High

Evaluation Method

		Continu	End Semester	Total			
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	1	0	5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department		Civil / Mechanical			Prog	amme :	B.Tech) .		
Semester		I	Cou	rse Ca	tegory:	ES		emester Exam Type: TE		
Course		U23ESTC01	P	eriods	/Week	Credit	Maxi	mum Marks		
Code		020201001	L	T	Р	С	CAM	ESE	TM	
Course Name	ME	BASICS OF CIVIL AND CHANICAL ENGINEERING	3	-	-	3	25	75	100	
		(Common to EEE, ECE, IC	E, ME	CH, Civ	il, Mecha	atronics I	Branches))		
Prerequisite	Basic	Science								
	On completion of the course, the students will be able to								BT Mapping (Highest Level)	
	CO1	Understand the types of buildings and materials. K2								
0	CO2	Summarize on the various components of buildings and surveying								
Course Outcomes	CO3	Identify the various infrastructure	faciliti	es				I	{ 2	
Outcomes	CO4	To familiarize the working princip systems	oile	K2						
	CO5	To understand about the power g	ponents	K1						
	CO6	To acquire knowledge about the	variou	s mach	ining pro	cess.		K2		

SECTION A - CIVIL ENGINEERING

UNIT - I	BUILDINGS AND BUILDINGS MATERIALS	Periods:	08
Buildings –	Definition - Classification according to NBC-plinth area, Floor area, carp	et area, floor	
	x - Development of Smart cities - Green building, Benefits from green build stone, brick, cement, cement mortar, concrete, steel, Timber - their propertie		CO1
UNIT - II	BUILDINGS COMPONENTS AND SURVEYING	Periods:	08
Stone Mas	ildings Components and their functions. Foundation: function and types - B onry and its types – Floors, Roofs and its types. Surveying: Objects – Cl - Measurements of Distances and areas – Leveling	•	CO2
UNIT - III	BASIC INFRASTRUCTURE	Periods:	07
and its eler	Bridges – types, components advantage and disadvantages. Railways - Pe ments. Sources of Water - Quality of Water- Domestic sewage Treatment – Dams - site selection for dam construction, types of dams.	-	CO3

SECTION B -	MECHANICAL	ENGINEERING
-------------	------------	-------------

	SECTION B - MECHANICAE ENGINEERING		
UNIT- IV	INTERNAL AND EXTERNAL COMBUSTION SYSTEMS	Periods:	08
U U	Classification – Working principles – Diesel and Petrol Engines: Two str es – merits and demerits.	oke and four	
Ũ	ators (Boilers) – Classification – Constructional features (of only low-press ngs and accessories – Merits and demerits – Applications.	ure boilers) –	CO4
UNIT- V	POWER GENERATION SYSTEMS, REFRIGERATION AND AIR CONDITIONING SYSTEM	Periods:	07
Power plants	s: Thermal – Nuclear, Hydraulic, Solar, Wind, Geothermal, Wave, Tida	and Ocean	
Thermal Ene only)	rgy Conversion systems - Functions, Applications - Schemes and layouts	(Description	~~-
Refrigeration	and Air Conditioning System: Terminology of Refrigeration and Air	Conditioning.	CO5
Principle of	vapour compression and absorption system - Layout of typical domestic	refrigerator –	
Window and	Split type room Air conditioner.		
UNIT- VI	MANUFACTURING PROCESS	Periods:	07
Lathe - typ	es, Specifications, Operations of a centre lathe. Casting - Pattern making,	Allowances,	
	d and dry sand moulding, casting defects. Welding - Arc and Gas weld I soldering (process description only).	ing process,	CO6
		h	

	Lecture Periods: 45	Tutorial Periods: -	Practical Peri	ods: -	Total Periods: 45
Тех	t Books				
1.	Dr. S. Jayakumar, "Ba	sic Civil Engineering", Aag	ash Nekaa Publication	s, 2011	
2.	G Shanmugam, MS P Edition, 2018.	alanichamy, Basic Civil ar	nd Mechanical Enginee	ring, McGraw	/ Hill Education, 1st
3.	Palanikumar, K. Basic	Mechanical Engineering,	ARS Publications, 2010).	
Ref	erence Books				
1.	M.P. Poonia, S.C. Sha 2018.	arma and T.R. Banga, Ba	isic Mechanical Engine	ering, Khanna	a Publishing House
2.	S.S.Bhavikatti, Basic C	Civil engineering, New Age	e International Ltd. 2018	3.	
3.	V. Rameshbabu, Basic	c Civil & Mechanical Engin	eering, VRB Publishers	s Private Limit	ted, January 2017.
4.	Serope Kalpakjian, St Publication, 2014.	even Schmid, Manufactu	ring Engineering and T	echnology, 7	th Edition, Pearson
5.	Gopi Satheesh, Basic	Civil engineering, Pearsor	n Publications, 3rd Edition	on, 2015.	
We	b References				
1.	https://nptel.ac.in/cours	ses/112107291/			
2.	https://nptel.ac.in/cours	ses/112/103/112103262/			
3.	https://ocw.mit.edu/cou lecture-notes/	irses/mechanical-enginee	ring/2-61-internal-comb	oustion-engine	es-spring-2017/
4.	https://nptel.ac.in/cours	ses/105102088/			
5.	https://nptel.ac.in/cours	ses/105104101/			

COs/POs/PSOs Mapping

COs	Program Outcomes (POs)												Prog Outco	ram Spe omes (P	m Specific nes (PSOs)		
	PO1	PO2	PO3	PO12	PSO1	PSO2	PSO3										
1	3	1	1	-	1	-	-	-	-	-	-	1	-	-	-		
2	3	1	1	-	1	-	-	-	-	-	-	1	-	-	-		
3	3	1	1	-	1	-	-	-	-	-	-	1	-	-	-		
4	3	1	-	-	-	-	-	-	-	-	-	1	-	-	-		
5	3	1	-	-	-	-	-	-	-	-	-	1	-	-	-		

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Methods

Assessment		Conti	nuous Assess	ment Marks (CA	M)	End Semester	Total
	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	5	5	5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department		EEE			Pro	gramme	B.Tech	•				
Semester		I	Cou	rse Ca	itegory	y: ES	*End Se T	mester ype: TE	Exam			
Course Code		U23EETC01	Peri	ods/W	eek	Credit	Ma	ximum N	∕larks			
		023221001	L	Т	Ρ	С	AM	ESE	ГМ			
Course Name	FLECTRICAL TECHNOLOGY 3 3 25											
Prerequisite		hematics and Physics completion of the course, the students will be able to (Highest Level)										
Outcome	CO1	O1 Demonstrate the basics of domestic wiring, including the factors that influence the choice of wiring systems in residential buildings.										
	CO2								K2			
	CO3	Explain the DC generators a principles of operation, and its				g their co	nstructior	۱,	K2			
	CO4											
	CO5	5 Describe and compare the operation of special machines. K2										

UNIT-I	BASICS OF	ELECTRICAL ENERGY	,		Periods:09						
affecting the of Wiring Circuits	choice of wirins, Basics of U wire, neutral	nd non- conventional soun ng system, Types of Wi Itility Supply, Knowledge wire, Earthing and it type	res and cables, Typ about distribution b	es of W ox, MC	/iring, Typical House B, plug types, fuses,	CO1					
UNIT-II	TRANSFOR	MERS			Periods:09						
Equivalent ci	rcuit, Voltage copper saving	construction, principle of Regulation, losses and Introduction to three p	nd efficiency. Load	test.	Auto transformers:	CO2					
UNIT-III	-III DC MACHINES Periods:09										
characteristics Equation, elec	of series an trical and med	on, Principles of opera od shunt generator. DC chanical characteristics of arters and its types.	motor: Principle of	f operat	ion, Types, Torque	CO3					
UNIT-IV		IES			Periods:09						
torque charac starting metho	teristics. Sing ds. Alternato	otor: Construction, princ gle Phase Induction M or: Construction, Principl otor: Construction, Metho	lotor: construction, es of operation, Typ	principlo es, EM	e of operation and F equation, Voltage	CO4					
UNIT-V	SPECIAL M	ACHINES			Periods:09						
	s. Reluctance	ervomotors. Stepper mo motor, Hysteresis moto				CO5					
LecturePo	eriods:45	TutorialPeriods:-	PracticalPerio	ds:-	TotalPeriods:4	5					

Text Books

- 1. B.L. Theraja, "Electrical Technology Vol.- II AC/DC Machines", S. Chand, 2008
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill Education Private Limited, 2nd Edition, 2019.
- 3. D. P. Kothari and I. J. Nagrath, "Electric Machines", Tata McGraw Hill Publishing Company Ltd, 5th Edition, 2017.

Reference Books

- 1. V. K. Mehta & Rohit Mehta, "Principle of Electrical Machines", S. Chand Publishers, 2014.
- 2. D Kothari, I Nagrath, "Basic Electrical Engineering", Tata Mcgraw Hill Education, 4th Edition, 2019.
- 3. M. S. Sukhija, T. K Nagsarkar, "Basic Electrical Engineering", Oxford University Press, 2011.
- 4. S. K. Sahdev," Fundamentals of Electrical Engineering and Electronics", DhanpatRai and Co, 2017.
- 5. E.G. Janardanan, "Special Electrical Machines", Prentice Hall India Learning Private Limited, 2014

Web References

- 1. https://www.coursera.org/lecture/linear-circuits-ac-analysis/5-1-transformers-dB0z9
- 2. https://www.elprocus.com/alternating-current-and-direct-current-and-its-applications/
- 3. https://www.electronicshub.org/electrical-systems-and-methods-of-electrical-wiring/
- 4. https://nptel.ac.in/courses/108/105/108105017/
- 5. https://lecturenotes.in/course/all/btech/electrical-engineering

* TE – Theory Exam, LE – Lab Exam

COs/POs/PSOs Mapping

COs					Prog	ram O	utcom	es (PO	s)					ram Spo omes (P	
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO1	PSO2	PSO3
1	3	3	3	1	2	-	1	-	-	-	1	1	3	2	-
2	3	3	3	1	2	-	1	-	-	-	1	1	3	2	-
3	3	3	3	1	2	-	1	-	-	-	1	1	3	2	-
4	3	3	3	1	2	-	1	-	-	-	1	1	3	2	-
5	3	3	3	1	2	-	1	-	-	-	1	1	3	2	-

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Methods

		Con	tinuous Asses	sment Marks (CA	M)	End				
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Semester Examination (ESE) Marks	Total Marks			
Marks	5	5	5	5	5	75	100			

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department		ECE	Progra	mme: E	B.Tech.						
Semester		I	Course	Categ	ory: PC		d Semes e: TE	ster Exa	ter Exam		
Course Code		U23ECT101	Period	s/Weel	(P		Credit Maximum Marks				
-		010101101	L	LT		C	CAM	ESE	TM		
Course Name		Circuits and Networks	3	-	-	3	25	75	100		
Prerequisite	Basic	s of active and passive compo	onents								
	On c	ompletion of the course, the stu	udents will	be able	to			BT Ma (Highes			
	CO1	Infer the fundamental laws an		K2							
	CO2	2 Apply the knowledge of basic circuital theorems and simplify the network.									
Outcome	СОЗ	Evaluate Steady state responsively voltages.	К3								
	CO4	Demonstrate the concepts of two port networks and solve different									
	CO5	Design the different passive fi applications	Iters and a	ttenuato	ors for va	arious		K	3		
UNIT-I CIRO	CUIT	ELEMENTS AND KIRCHHOF	F'S LAWS					Peri	ods: 12		
Capacitance P Law - Voltage	aram anc	Itage, Current, Power and Ene eter - Independent Energy So current Division rule - Pov rce Transformation Technique	urces - Kir wer in Se	chhoff's	Voltage	e Law, k	Kirchhoff's	Gurren	CO1		
UNIT-II CIR	сшт	THEOREMS FOR ANALYSIN	GAC&D		IITS				<u>i</u>		

UNIT-II CIRCUIT THEOREMS FOR ANALYSING AC & DC CIRCUITS (Independent sources only) Introduction- Nodal Analysis, Mesh Analysis - Superposition Theorem - Thevenin's Theorem - Norton's Theorem Resincesity Theorem Componentian Theorem Maximum Power Transfer Theorem

Theorem- Reciprocity Theorem - Compensation Theorem - Maximum Power Transfer Theorem - Duals and Duality - Tellegen's Theorem - Millman's Theorem - Application of theorems to DC and AC circuits

UNIT-III ALTERNATING CURRENTS & VOLTAGES AND STEADY-STATE RESPONSE Periods: 12

The Sine Wave, Angular Relation, The sine wave equation, Voltage and Current Values of a Sine Wave, Phase Relation - Pure Resistor, Pure Inductor, Pure Capacitor; Impedance Diagram, Phasor Diagram, Computation of active, reactive and apparent powers- power triangle, power factor CO3 Steady State Response: DC Response of an R-L Circuit, DC Response of an R-C Circuit, DC Response of an R-L-C Circuit

UNIT-IV TWO PORT NETWORK FUNCTIONS AND PARAMETERS

Periods: 12

Introduction to two port networks- Driving point impedance and admittance, Transfer impedance and admittance, Voltage and current Transfer ratio, Concept of pole-zeros in network function - Open circuit impedance (Z) parameters - short circuit admittance (Y) parameters - transmission (ABCD) cO4 parameters and inverse transmission parameters - Hybrid (h) parameters and inverse hybrid parameters - Conversion between parameters

UNIT-V FILTERS AND ATTENUATORS Periods: 12 Fundamentals of filters, types of filters- low pass, high pass, band pass and band elimination filters, Image: Comparison of the second second

Constant K-filters. Attenuators: Symmetric and asymmetric attenuators- T-attenuators and π - CO5 attenuators only

Lecture Periods: 60	Tutorial Periods: -	Practical Periods: -	Total Periods: 60

Textbo	poks
1.	A Sudhakar and Shyammohan S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill Education, Fifth edition July 2017
2.	A William Hayt, "Engineering Circuit Analysis" 8th Edition, McGraw-Hill Education, 2016
Refere	ence Books
1.	Valkenberg V., "Network Analysis", 3rd Ed., Prentice Hall International Edition. 2007.
2.	Hayt and Kemmerly, "Engineering Circuit Analysis", McGraw Hill Education, New Delhi, 8th Ed, 2013.
3.	Kuo F. F., "Network Analysis and Synthesis", 2nd Ed., Wiley India. 2008.
4.	PM Chandrashekaraiah, Electric Circuit and Network Analysis" First edition, CBS Publishers, 2015.
5.	Joseph A. Edminister, Mahmood Maqvi, "Electric Circuits", Schaum's Outline Series, 5th edition, TMH Publishers, 2016
Web R	leferences
1.	https://www.tutorialspoint.com/network_theory/network_theory_twoport_parameter_conversions.htm
2.	https://www.allaboutcircuits.com/textbook/alternating-current/chpt-8/low-pass-filters/
3.	https://nptel.ac.in/courses/108/105/108105159/
4.	https://www.newtondesk.com/network-theory-handwritten-study-notes/
_	

5. https://lecturenotes.in/subject/25/network-theory-nt

* TE - Theory Exam, LE - Lab Exam

COs/POs/PSOs Mapping

COs					Progra	am Out	comes	(POs)						ram Spe omes (P	
	P01	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PSO1	PSO2	PSO3
1	3	3	3	3	1	-	-	-	-	-	-	1	3	2	-
2	3	3	3	3	1	-	-	-	-	-	-	1	3	2	-
3	3	3	3	3	1	-	-	-	-	-	-	1	3	2	-
4	3	3	3	3	1	-	-	-	-	-	-	1	3	2	-
5	3	3	3	3	1	-	-	-	-	-	-	1	3	2	-

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

Assassment		Continue	ous Asse	ssment Marks (C	AM)	End Semester Total				
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks			
Marks	10		5	5	5	75	100			

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department		English	B.Tech.									
Semester		I	Cou	ster Exan TE	r Exam Type: E							
Course Code			Pe	Periods/Week Credit				Maximum	Marks			
Course Coue		U23ENBC01	L	Т	P	С	CAM	ESE	ГМ			
Course Name	С	ommunicative English - I	2	-	2	3	50	50	100			
	1	(Common to ALL	Branches	except	t CSBS)		.1				
Prerequisite	Basics	of English Language										
	On completion of the course, the students will be able to											
Course	CO1	Understand the communication flow in organization and its objectives K2										
Outcomes	CO2	2 Write the technical contents with grammatically precise sentences K2										
	CO3	Articulate with correct pronunc in speaking	ciation an	d overc	ome ve	ernacular	impact	к	K3			
	CO4	A Express opinions confidently in formal and informal communicative contexts										
	CO5	CO5 Attend interview with assertiveness										

UNIT-I Workstead Communication

Periods:10

Communication, Definition, Process, Channels, Barriers, Strategies for Effective Communication, Verbal CO1 and Nonverbal Communication - Listening, Types, Barriers, Enhancing Listening Skills - Bibliography: Book, Journal and Internet References

UNIT- II Common Errors In Writing And Comprehension Strategies	Periods:10
Subject Verb Agreement, Misplaced Modifiers, Squinting Modifiers, Dangling Modifier, Sentence, Comma Splice, Sentence Fragment - Reading Comprehension: Technical p Strategies: Skimming, Scanning, Intensive and Extensive Reading, Prediction, and Co Meaning	assage, coa

UNIT- III Phonetics	Periods:10
Pronunciation Guidelines to consonants and vowels, Sounds Mispronounced, Silent and N Letters, Intonation, Spelling Rules and Words often misspelled, Mother Tongue Influence (MTI) Techniques for Neutralization of Mother Tongue	

UNIT- IV Communication Practice-I	Periods:15
List of Exercises	
Listening: Self Introduction videos	
Speaking: Self-Introduction, Extempore, and Role Play	CO4
Reading: Non-Technical Comprehension Passage	
Writing: Common Errors in Writing	

UNIT-V	Interpersonal C	ommunication-I		Periods:
List of E	Exercises			
Listenin	g: Speech Sounds	Interview Videos		
		ed Group Discussion, and	Conversation	C
	: Commonly Confu			U.
	Transcription			
l oct	ure Periods:30	Tutorial Periods:-	Practical Periods:30	Total Periods:60

Text Books

- 1. Richa Mishra, Ratna Rao, "A textbook of English Language Communication Skills", Macmillan Publishers India Private Ltd., Revised Edition 2021.
- 2. Rizvi M. Ashraf, "Effective Technical Communication", New Delhi: Tata-McGraw-Hill Publishing Company Limited, 4th Edition, 2010.
- 3. Balasubramanian T, "English Phonetics for Indian students workbook", 2nd Edition, Trinity Press, 2016.

Reference Books

1. N.P.Sudharshana, C. Savitha," English for Engineers", Cambridge University Press, 2018.

- 2. Raman, Meenakshi, and Sharma, Sangeetha, "Technical Communication Principles and Practice", 3rd Edition, Oxford University Press, 2017.
- 3. Comfort, Jeremy, Tal., "Speaking Effectively: Developing Speaking Skills for Business English", Cambridge University Press, Cambridge, Reprint 2011.
- 4. Wren & Martin, "High School English Grammar and Composition", S Chandh & Co. Ltd, 2015.
- 5. Boove, Courtland L, "Business Communication Today", Pearson Education, New Delhi, 2002.

Web References

- 1. https://lemongrad.com/subject-verb-agreement-rules/
- 2. https://opentextbc.ca/advancedenglish/chapter/misplaced-and-dangling-modifiers/
- 3. https://www.hitbullseye.com/Reading-Comprehension-Tricks.php
- 4. https://www.softwaretestinghelp.com/how-to-crack-the-gd/
- 5. https://worldscholarshipvault.com/neutralize-mother-tongue-interference/

COs					Prog	ram O	utcom	es (PO	s)					ram Spe omes (P	
	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	1	-	-	-	-	-	-	-	-	3	-	1	-	-	-
2	1	-	-	-	-	-	-	-	-	3	-	1	-	-	-
3	1	-	-	-	-	-	-	-	-	3	-	1	-	-	-
4	1	-	-	-	-	-	-	-	-	3	-	1	-	-	-
5	1	-	-	-	-	-	-	-	1	3	-	1	-	-	-

COs/POs/PSOs Mapping

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Methods

	Theory												
Assessment -	Contin	uous Ass	essment Mark	End Semester	Total								
	CAT 1	CAT 2	Model Exam	Attendance	Examination (ESE) Marks	Marks							
	5	5	5	5	75								
Marks	20(to be weig	ghted for 10 ma	arks)	(to be weighted for 50 marks)	60							

		Practical		
Continuous Assessm Evaluation	ent Internal	End Semeste	Total Marks	
30(to be weight	ed for 10 marks)	:		
Listening (L)*	10	Listening (L)*	10	40
Speaking(S)	5	Speaking(S)	5	- 40
Reading(R)*	10	Reading(R)*	10	1
Writing(W)*	5	Writing(W)*	5	1

LRW components of Practical can be evaluated through Language Lab Software

Department		Mechanical Engineering			Progr	amme :	B.Tec	:h.				
Semester		I	Cours	se Ca ES		ry: E	End Semester Exam Type: LE					
Course			Peri			Credit		mum N	/larks			
Code		U23ESPC02	L	Т	P	С	CAM	ESE	TM			
Course Name	Desi	gn Thinking and Idea Laboratory	-	-	2	1	50	50	100			
		(Common to ALL	Branche	es)								
Prerequisite	Basic	Knowledge of Science										
	On co		BT Mapping (Highest Level									
	C01	Demonstrate a comprehensive unders associated with the IDEA Lab.	entory	K2								
	CO2	Develop proficiency in ideation tech innovative solutions for various design	e and	К3								
Course Outcomes	CO3	ication s, and nysical	КЗ									
	CO4	 components. Cultivate the skills necessary for developing innovative and desirable products, including the ability to integrate user needs, market trends, and technological advancements into the design process. 										
	CO5	Apply iterative design methodologies based on feedback, user testing, and and usability aspects		K4								

Design process: Traditional design, Design thinking, Existing sample design projects, Study on designs around us, Compositions/structure of a design, Innovative design: Breaking of patterns, Reframe existing design problems, Principles of creativity Empathy: Customer Needs, Insight-leaving from the lives of others/standing on the shoes of others, Observation

Design team-Team formation, Conceptualization: Visual thinking, Drawing/sketching, New concept thinking, Patents and Intellectual Property, Concept Generation Methodologies, Concept Selection, Concept Testing, Opportunity identification Prototyping: Principles of prototyping, Prototyping technologies, Prototype using simple things, Wooden model, Clay model, 3D printing; Experimenting/testing.

Sustainable product design, Ergonomics, Semantics, Entrepreneurship/business ideas, Product Data Specification, Establishing target specifications, Setting the final specifications. Design projects for teams.

List of Lab Activities and Experiments

- 1. Schematic and PCB layout design of a suitable circuit, fabrication and testing of the circuit.
- 2. Machining of 3D geometry on soft material such as softwood or modelling wax.
- 3. 3D scanning of computer mouse geometry surface. 3D printing of scanned geometry using FDM or SLA printer.
- 4. 2D profile cutting of press fit box/casing in acrylic (3 or 6 mm thickness)/cardboard, MDF (2 mm) board using laser cutter & engraver.
- 5. 2D profile cutting on plywood /MDF (6-12 mm) for press fit designs.
- 6. Familiarity and use of welding equipment.
- 7. Familiarity and use of normal and wood lathe.
- 8. Embedded programming using Arduino and/or Raspberry Pi.
- 9. Design and implementation of a capstone project involving embedded hardware, software and machined or 3D printed enclosure.
- 10. Discussion and implementation of a mini project.
- 11. Documentation of the mini project (Report and video).

Lecture Periods: -	Tutorial Periods: -	Practical Periods: 30	Total Periods: 30	

Text Books

- 1. Tim Brown, Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, HarperCollins Publishers Ltd
- 2. Workshop / Manufacturing Practices (with Lab Manual), Khanna Book Publishing.

Reference Books

- 1. Ulrich and Eppinger, Product Design and Development, 3rd Edition, McGraw Hill, 2004
- 2. The Big Book of Maker Skills: Tools & Techniques for Building Great Tech Projects. Chris Hackett. Weldon Owen; 2018.
- 3. The Total Inventors Manual (Popular Science): Transform Your Idea into a Top-Selling Product. Sean Michael Ragan, Weldon Owen; 2017.
- 4. The Art of Electronics. 3rd edition. Paul Horowitz and Winfield Hill. Cambridge University Press.
- 5. Practical Electronics for Inventors. 4th edition. Paul Sherz and Simon Monk. McGraw Hill.
- 6. Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards. Simon Monk and Duncan Amos. McGraw Hill Education.
- 7. Programming Arduino: Getting Started with Sketches. 2nd edition. Simon Monk. McGraw Hill.
- 8. Venuvinod, PK., MA. W., Rapid Prototyping Laser Based and Other Technologies, Kluwer
- 9. Chapman W.A.J, "Workshop Technology", Volume I, II, III, CBS Publishers and Distributors, 5th Edition,2002.

Web References

1. https://onlinecourses.nptel.ac.in/noc23_mg72

COs					Prog	ram O	utcom	es (PO	s)				Program Specific Outcomes (PSOs)		
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								PO12	PSO1	PSO2	PSO3		
1	3	2	2	2	2	2	-	-	2	-	3	2	-	-	-
2	3	3	3	2	2	2	-	-	2	-	3	2	-	-	-
3	3	3	3	2	3	2	-	-	2	-	3	2	-	-	-
4	3	3	3	2	3	2	-	-	2	-	3	2	-	-	-
5	3	3	3	2	3	2	-	-	2	-	3	2	-	-	-

COs/POs/PSOs Mapping

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Methods

Assessment	Co	ontinuous	Assessn	nent Marks (CA	M)	End	
	Performan cl	ce in prac asses	tical	Model	Attendence	Semester Examination	Total Marks
	Conduction of practical	Record work	viva	Practical Examination	Attendance	(ESE) Marks	
Marks	15	5	5	15	10	50	100

Department			EEE			Prog	gramme	: B.Te c	ch.					
Semester			I	Co	urse C	ategory	/: ES		emester Type: LE	Exam				
Course Code			U23EEPC01	P		Week	Credi		<i>l</i> aximum	Marks				
				L	Т	P	С	CAM	ESE	TM				
Course Name	EL	-	ICAL TECHNOLOGY ABORATORY	-	-	2	1	50	50	100				
Prerequisite	Mathe	matic	s and Physics											
	On com	pletior	of the course, the studen	ts will I	be able	e to			BT Ma (Highest					
CO1 Understand the practical aspects of domestic wiring.														
Course Outcome	CO2	Demo	instrate the operations of various Transformers. K3											
Cutoome	CO3	CO3 Illustrate the operational details of the DC machines by conducting K3 various tests.												
	CO4	Comp	are the various speed con	trol tec	ol techniques of DC motors. K3									
	CO5		ne performance of AC mad ments.	chines	by con	ducting	suitable		K	3				
			List of Exp											
		-	Practice (Staircase Wiring	, Docto	or's Roo	om Wirir	ng, Godo	wn Wirii	ng)					
		-	le phase transformer.											
		•	ase transformers hree phase power using t		tmotor	mothod	1							
			est on DC shunt Generator		linelei	method								
			shunt motor.	•										
		-	series motor											
			thods of DC motor.											
•			le phase Induction Motor.											
		-	ase induction motor.											
Lecture F	Periods	:-	Tutorial Periods:-	Pra	ctical	Period	ls [.] 30	Tota	Period	s [.] 30				

Reference Books

- 1. B.L. Theraja, "Electrical Technology Vol.- II AC/DC Machines", S. Chand, 2008
- D. C. Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill Education Private Limited, 2nd Edition, 2019. 2.
- D. P. Kothari and I. J. Nagrath, "Electric Machines", Tata McGraw Hill Publishing Company Ltd, 5th Edition, 2017.
 V. K. Mehta & Rohit Mehta, "Principle of Electrical Machines", S. Chand Publishers, 2014.
 D Kothari, I Nagrath, "Basic Electrical Engineering", Tata Mcgraw Hill Education, 4th Edition, 2019.

- M. S. Sukhija, T. K Nagsarkar, "Basic Electrical Engineering", Oxford University Press, 2011. 6.

Web References

- 1. https://www.electrical4u.com/electric-machines/
- 2. https://www.javatpoint.com/electrical-machines-tutorial
- 3. https://www.coursera.org/lecture/linear-circuits-ac-analysis/5-1-transformers-dB0z9
- 4. https://www.elprocus.com/alternating-current-and-direct-current-and-its-applications/
- 5. https://www.electronicshub.org/electrical-systems-and-methods-of-electrical-wiring/

COs	COs/POs/PSOs Mapping															
COs	Program Outcomes (POs)													Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	3	2	1	-	2	-	-	-	3	-	-	1	3	1	-	
2	3	2	1	-	2	-	-	-	3	-	-	1	3	1	-	
3	3	2	1	-	2	-	-	-	3	-	-	1	3	1	-	
4	3	2	1	-	2	-	-	-	3	-	-	1	3	1	-	
5	3	2	1	-	2	-	-	-	3	-	-	1	3	1	-	

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

	Co	ontinuous A	End					
Assessment	Performan cla	ce in practi asses	cal	Model Practical	Attendance	Semester Examination	Total Marks	
	Conduction of practical	Record work	viva	Examination	Attendance	(ESE) Marks		
Marks	15	5	5	15	10	50	100	

Department	ECE	Programme: B.Tech.								
Semester	I	Course Category: PC ^{*End} Semester Exam Type: LE								
Course Code	U23ECP101	Period	ls / W	eek	Credit	Maxim	um Marks			
Course Code	UZSECFIUI	L	Т	Ρ	С	CAM	ESE	ТМ		
Course Name	Circuits and Networks Laboratory	0	0	2	1	50	50	100		

Prerequisite			
	On co	ompletion of the course, the students will be able to	BT Mapping (Highest Level)
	CO1	Familiarize with the fundamentals of basic circuit elements.	K2
Course Outcome	CO2	Perform Analysis and verification of network theorems	K2
	CO3	Develop the application of theoretical concepts on circuits	K3
	CO4	Illustrate various network parameters.	K4
	CO5	Demonstrate the concepts of two port networks and simulation models	K4

List of Exercises

- 1. Study of passive and active components
- 2. Construction of series and parallel circuits using resistors and verification using KVL and KCL
- 3. Verification of mesh and nodal analysis
- 4. Verification of Thevenin's and Norton's Theorem
- 5. Verification of superposition Theorem
- 6. Verification of maximum power transfer theorem
- 7. DC response of RL, RC and RLC circuits
- 8. Determination of Z and Y parameters of a two-port network.
- 9. Determination of ABCD and h parameters of a two-port network.
- 10. Design of LPF and HPF using passive components
- 11. Simulate an LPF and HPF using PSPICE simulation tool and compare the results

		*	,
Lecture Periods: -	Tutorial Periods: -	Practical Periods: 30	Total Periods: 30

Reference Books

- 1. Valkenberg V., "Network Analysis", 3rd Ed., Prentice Hall International Edition. 2007.
- Hayt and Kemmerly, "Engineering Circuit Analysis," McGraw Hill Education, New Delhi, 8th Ed, 2013.
 Kuo F. F., "Network Analysis and Synthesis", 2nd Ed., Wiley India, 2008.
- 4. PM Chandrashekaraiah, Electric Circuit and Network Analysis" First edition, CBS Publishers, 2015.
- 5. Joseph A. Edminister, Mahmood Maqvi, "Electric Circuits," Schaum's Outline Series, 5th edition, TMH Publishers, 2016

Web References

- 1. https://phet.colorado.edu/sims/html/circuit-construction-kit-dc-virtual-lab/latest/circuit-construction-kit-dc-virtual-lab_en.html
- 2. https://www.circuitlab.com/editor/#?id=7pq5wm&from=homepage
- 3. http://vlabs.iitkgp.ac.in/be/#
- 4. http://www.allaboutcircuits.com/technical-articles/an-introduction-to-filters/
- 5. http://www.learnabout-electronics.org/ac_theory/filters81.php

COs/POs/PSOs Mapping

COs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3	3	3	-	-	-	-	-	-	-	-	3	2	2
2	3	3	3	3	-	-	-	-	-	-	-	-	3	2	2
3	3	3	3	3	-	-	-	-	-	-	-	-	3	2	2
4	3	3	3	3	-	-	-	-	-	-	-	-	3	2	2
5	3	3	3	3	3	-	-	-	-	-	-	-	3	2	2

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

	Co	End						
Assessment		mance in al classes		Model Practical	Attendance	Semester Examination	Total Marks	
	Conduction of practical	Record work	viva	Examination	Allendance	(ESE) Marks		
Marks	15	5	5	15	10	50	100	

Department		ECE			Pro	gramme:	B.Tech			
Semester		I	Coui	se Cat	egory	' : MC End Ty	d Semes pe: -	ster Exa	Im	
Semester Course Code Course Name In Prerequisite			Period	s/Wee	ek	Credit	Ma	aximum	Marks	
Course Code		U23ECM101	L	T	P	С	CAM	ESE	ТМ	
Course Name	Induct	ion Program - (UHV-I)	-	-	-	Non- Credit	-	-	-	
Prerequisite				-						
		BT Mapping (Highest Level)								
	CO1	Develop holistic attitude Society	K2							
Course Outcomes	CO2	2 Acquire grammar skills and capable to write and speak English confidently								
	CO3									
	CO4	04 Know about the art and culture, language and literature of this vast K2 secular nation								
	CO5 Identify the inherent talent and develop it professionally						K3			

UNIT-I Universal Human Values

Periods: 12

Welcome and Introductions - Getting to know each other, Aspirations and Concerns - Individual Academic and Career, Expectations of Family, Peers, Society, Nation, Fixing one's Goals, Self-Management - Self-confidence, Peer Pressure, Time Management, Anger, Stress Personality Development, Self-improvement, Health - Health issues, Healthy diet, Healthy lifestyle, Hostel life, Relationships - Home sickness, Gratitude towards Parents, Teachers and others Ragging and interaction, Competition and Cooperation, Peer Pressure, Society - Participation in Society, Natural Environment - Participation in Nature, Sum Up - Role of Education, Need for a Holistic Perspective, Self-evaluation and Closure - Sharing and feedback.

UNIT-II Proficiency in English

Periods: 12

Communication skills - Prognostic test on Grammar - Synonyms, Antonyms, Tenses, Sentence Completion, Idioms and Phrases, One-word Substitution, Homophones, Homonyms, Use of CO2 Prepositions, Subject-verb

Agreement - Writing - Paragraph writing, Letter writing, Essay writing, Story Development.

UNIT-III Bridge Course in Mathematics and C Programming Periods: 12

Mathematics:

Fundamentals of differential and integral calculus: Theory and Practice, Limit of function - Fundamental results on limits - Continuity of a function - Concept of differentiation - Concept of derivative - Slope of a curve -Differentiation Techniques - Derivatives of elementary functions from first principle - Derivatives of inverse functions - Logarithmic differentiation - Method of substitution - Differentiation of parametric functions -Differentiation of implicit functions - Higher order derivatives. Integrals of functions containing linear functions -Method of integration (Decomposition method, method of substitution, integration by parts) - Definite integrals. Simple definite integrals - Properties of Definite integrals - Reduction formulae - Area and volume - Length of curve - surface area of a solid.

C Programming: Features of C and its basic Structure - Keywords - constants - variables - operators - Data types - Formatted input and output statements - Control and Looping statement - Arrays - Functions - Strings - writing simple C programs.

UNIT-IV Literary Activities

Periods: 12

Team building activities - Quiz - Oral Exercises - Group discussion, Debate, Extempore, Role play, CO4 சிறப்பு சொற்பொழிவு - தமிழர் மரபு மற்றும் தமிழர் தொழில்நுட்பம்.

UNIT-V Creative Arts										
Introduction to painting and renowned artworks - Documentary and Short films - Music - Vocal, CO5										
Instrumental - Dance - Classical, Cinematic - Mimicry - Mime. Lecture Periods: 60 Tutorial Periods: - Practical Periods: - Total Period										

- R.R Gaur, R. Asthana, G.P. Bagaria," A Foundation Course in Human Values and Professional Ethics", Excel Books, New Delhi, 2nd Revised Edition, 2019.
- 2. Kumar Mohan R, "English Grammar for all (Functional and Applied Grammar)", Unicare Academy, 2022.
- 3. Seely, John," Oxford A-Z of Grammar and Punctuation, Oxford Publication, 2013.
- 4. B.V. Ramana," Higher Engineering Mathematics", Tata McGraw Hill, New Delhi, 6th Edition, 2018.
- 5. Dr. A. Singaravelu, "Engineering Mathematics I", Meenakshi publications, Tamil Nadu, 2019.
- 6. E. Balagurusamy, "PROGRAMMING IN ANSI C", Mc Graw Hill, 8th Edition, 2019.
- 7. Dr.K.K.Pillay,"Social Life of Tamils", A joint publication of TNTB & ESC and RMRL
- 8. R.Balakrishnan, "Journey of Civilization", Roja muthiah research publishers, 1st Edition 2019
- தமிழக வரலாறு மக்களும் பண்பாடும், பிள்ளை, கே. கே. , சென்னை : உலகத் தமிழாராய்ச்சி நிறுவனம் , 2002.
- 10. கணினித்தமிழ் முனைவர் இல.சுந்தரம், விகடன் பிரசுரம்.
- 11. கீழடி வைகை நதிக்கரையில் சங்க கால நகர நாகரிகம், தமிழக தொல்லியல் துறை

Web References

- 1. http://www.newsociety.com/Books/S/Slow-isBeautiful
- 2. https://www.aplustopper.com/formal-letter/
- 3. https://www.javatpoint.com/c-programming-language-tutorial
- 4. http://www.math.cum.edu/~wn0g/2ch6a.pdf
- 5. https://education.nsw.gov.au/teaching-and-learning/curriculum/creative-arts

SEMESTER-II

SI.	Course Code		Cotogony	P	erio	ds	Cradita	М	ax. Marl	s
No.	Course Code	Course Title	Category	L	Т	Ρ	Credits	CAM	ESM	Total
Theory	y									
1	U23MATC02	Engineering Mathematics-II	BS	3	1	0	4	25	75	100
2	U23ESTC02	Engineering Mechanics	ES	3	0	0	3	25	75	100
3	U23CSTC01	Programming in C	ES	3	0	0	3	25	75	100
4	U23ECT202	Electron Devices	PC	3	0	0	3	25	75	100
5	U23HSTC01	Universal Human Values - II	HS	2	0	0	2	25	75	100
Theory	y cum Practical									
6	U23ENBC02	Communicative English - II	HS	2	0	2	3	50	50	100
Practio	cal									
7	U23ESPC03	Engineering Graphics using AutoCAD	ES	0	0	2	1	50	50	100
8	U23CSPC01	Programming in C Laboratory	ES	0	0	2	1	50	50	100
9	U23ECP202	Electron Devices Laboratory	PC	0	0	2	1	50	50	100
Ability Enhancement Course										
10	U23ECC2XX	Certification Course – II	AEC	0	0	4	-	100	-	100
Manda	atory Course									
11	U23ECM202	MC	0	0	2	-	100	-	100	
	Total								575	1100

Department		Mathematics	Mathematics Programme : B.Tech. Image: Course Category : End Semester Exam									
Semester		II	Cour	se Ca BS	•••	: E		ype : TE				
			Per	iods/\	Week	Credit	Maximum Marks					
Course Code		U23MATC02	L	Т	Р	С	CAM	ESE	TM			
Course Name	М	ENGINEERING ATHEMATICS - II	3	1	-	4	25	75	100			
		(Common to	ALL Bra	nches	s Excep	t CSBS,	FT)	•				
Prerequisite	Basic N	Mathematics										
•	On com	On completion of the course, the students will be able to										
Course	CO1	Convert a periodic funct	K2									
Outcome	CO2	Compute Fourier transfe	orms of va	arious	function	IS.		K	3			
	CO3	Solve Differential Equat	ions using	g Lapl	ace tran	sforms.		K	3			
	CO4	Apply inverse Laplace t	K3									
	CO5	Solve difference equatio	K3									

ods:12	Perio		S	FOURIER SER	UNIT – I
CO1	ne series and	and Even functions – Half-Range sir ty.	al Fourier series – Odd ervals – Parseval's Ident		
ods:12	Peric		SFORMS	FOURIER TRA	UNIT – II
CO2	irier sine and	irier Transform (without proof) – Fou of).	verse – Properties of For properties (excluding pro-		
ods:12	Peric		ISFORMS	LAPLACE TRA	UNIT – III
CO3	luding proof)	dic functions – Basic properties (exclination in the second structure secon			
ods:12	Perio		ACE TRANSFORMS	INVERSE LAPI	UNIT – IV
CO4	ons of Linear	n theorem (excluding proof) – Soluti onstant coefficients.	Transforms – Convolutio s of second order with c		
ods:12	Perio		NS	Z – TRANSFOR	UNIT – V
CO5	Residues) –	nsforms (using partial fraction and	roperties – Inverse Z-tra ns using Z - transform.		
ds: 60	Total Perio	Practical Periods: -	Tutorial Periods: 15	e Periods: 45	Lecture

Text Books

1.	T. Veerarajan, "Engineering Mathematics", Tata McGraw Hill, New Delhi, 3 rd Edition, 2011.
2.	C. P. Gupta, Shree Ram Singh. M. Kumar, "Engineering Mathematics for semester I & II", Tata McGraw
	Hill, New Delhi, 2 nd Edition, 2016.
~	

3. H.K. Dass, "Advanced Engineering Mathematics", S. Chand, New Delhi, 22nd Edition 2019.

Reference Books

- N.P. Bali and Dr. Manish Goyal, "A TEXTBOOK OF ENGINEERING MATHEMATICS", UNIVERSITY SCIENCE PRESS, India, 8th Edition, 2016.
- P. Sivaramakrishna Das and C. Vijayakumari, "Engineering Mathematics", Pearson India Education services Pvt. Ltd, India 1st 2017.
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, New Delhi, 10th Edition, 2019.
- G. Balaji, "Engineering Mathematics Transforms and Partial Differential Equations", G. Balaji Publishers, 18th Edition, 2022.
- 5. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill, New Delhi, 2017.

- 1. https://nptel.ac.in/courses/111105121/
- 2. https://nptel.ac.in/courses/111105035/
- 3. https://nptel.ac.in/courses/11110711
- 4. https://swayam.gov.in/nd1_noc20_ma17/preview

5. https://nptel.ac.in/courses/111/103/111103021/

COs/POs/PSOs Mapping

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	2	2	-	-	1	-	-	-	-	-	1	1	-	-
2	3	2	1	1	-	1	-	-	-	-	-	1	3	-	-
3	3	2	1	1	-	1	-	-	-	-	-	1	3	-	-
4	3	2	1	1	-	1	-	-	-	-	-	1	3	-	-
5	3	2	1	1	-	1	-	-	-	-	-	1	3	-	-

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Methods

		Con	tinuous Ass	CAM)	End Semester		
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Total Marks
Marks	5	5	5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department										Tech.			
Semester		II	Cou	irse Ca	ategory:	ES	E		mester ype: TE	Exam			
Course		U23ESTC02	F	Periods	Week	Cre	dit	Max	imum M	arks			
Code			L	T	P	C		CAM	ESE	TM			
Course Name			2	1	-		3		75	100			
Prerequisite	Engineering	Common to EEE, ECE,	MECH,	CIVIL	, Mecha	troni	CS B	ranche	es)				
Terequisite		completion of the cours	se, the s	student	s will b	e able	e to		(Hię	apping ghest vel)			
CO1 Recognize the basics of equilibrium of particles in 2D and 3D									ŀ	(2			
Course	CO2 Revie	w the requirements of equ	ilibrium	of rigid	bodies	in 2D	and	3D.	ŀ	٢2			
Outcomes	CO3 Solve	problem related to friction	force.						ŀ	(3			
	CO4 Comp	oute the center of mass an	d mome	ent of in	ertia of s	surfac	es ar	nd solid	ls. I	(3			
	CO5 Predi	ct displacement, velocity a	nd acce	eleratior	n of dyna	imic p	oartic	les.	ŀ	(3			
UNIT- I	BASICS AN	ND STATICS OF PART							Perie	ods: 09			
Forces - Lam	i's theorem, P	imensions - Vectorial rep arallelogram and triangula ransmissibility - Equivalent	r Law o	f forces	s -Resolu	ution o	of for	ces - Eo					
-			i 3y3i0i				y ulag	gram					
	EQUILIBRI	UM OF RIGID BODIES	s of stal	ble equ	ilibrium	- Mor	nents	s and C	Couples				
Types of sup Moment of a Scalar compo – Forces in Equilibrium of	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V noment - Varignon's theore prium of a particle in in three dimensions (Desc	s of stal /ectorial em -Equ spac criptive o	ble equ l repres uilibrium ce - E only).	ilibrium entation o of Rigic quivalen	- Mor of mo I bodi t sy	ments omen es in	s and C its and two dir	Couples couples nensions forces	CO2			
Types of sup Moment of a Scalar compo – Forces in s	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V noment - Varignon's theore prium of a particle in	s of stal /ectorial em -Equ spac criptive o	ble equ l repres uilibrium ce - E only).	ilibrium entation o of Rigic quivalen	- Mor of mo I bodi t sy	ments omen es in	s and C its and two dir	Couples couples nensions forces	CO2			
Types of sup Moment of a Scalar compo - Forces in s Equilibrium of UNIT - III Trusses - De sections - Fri	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies STRUCTUF finition of a tr ction force - L	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V noment - Varignon's theore prium of a particle in in three dimensions (Desc	s of stal /ectorial em -Equ spac criptive o USSES nalysis o	ble equ l repres uilibrium ce - E conly). 5 AND of Truss	ilibrium entation of Rigic quivalen FRICTI ses - Me	- Mor of mo l bodi t sy ON	ments omen es in stems of jo	s and C its and c two dir s of ints - N	Couples couples mensions forces Perio	CO2 cods: 09			
Types of sup Moment of a Scalar compo – Forces in s Equilibrium of UNIT - III Trusses - De sections - Fri	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies STRUCTUF finition of a tr ction force - L e friction- Roll	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V noment - Varignon's theore prium of a particle in in three dimensions (Desc RAL ANALYSIS OF TRU uss - Simple Trusses - Au aws of sliding friction - ee	s of stal /ectorial em -Equ spac criptive o USSES nalysis o quilibriu	ble equ l repres uilibrium ce - E only). 5 AND of Truss m analy	ilibrium entation of Rigic quivalen FRICTI ses - Me	- Mor of mo l bodi t sy ON	ments omen es in stems of jo	s and C its and c two dir s of ints - N	Couples couples nensions forces Perio lethod o th sliding	CO2 cods: 09			
Types of sup Moment of a Scalar compo - Forces in s Equilibrium of UNIT - III Trusses - De sections - Fri friction -wedg UNIT - IV Determination nertia of plan	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies STRUCTUF finition of a tr ction force - L e friction- Roll PROPERTI n of centroid c e and areas-	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V noment - Varignon's theore prium of a particle in in three dimensions (Desc RAL ANALYSIS OF TR uss - Simple Trusses - Au aws of sliding friction - ev ing resistance.	s of stal /ectorial em -Equ spac criptive o USSES nalysis o quilibriu D SOL ss - Paj	ble equ l repres uilibrium ce - E conly). 5 AND of Truss m analy .IDS opus ar	ilibrium entation of Rigic quivalen FRICTI ses - Me ysis of s	- Mor of mo I bodi t sy ON ethod imple	of jo	s and C its and c two dir s of ints - N ems wi	Couples couples forces Perio Method o th sliding Perio	CO2 cds: 09 f CO3 cds: 09			
Types of sup Moment of a Scalar compo – Forces in s Equilibrium of UNIT - III Trusses - De sections - Fri friction -wedg UNIT - IV Determinatior nertia of plan area- product	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies STRUCTUF finition of a tr ction force - L e friction- Roll PROPERTI n of centroid co e and areas- of inertia- ma	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V boment - Varignon's theore orium of a particle in in three dimensions (Desc RAL ANALYSIS OF TR uss - Simple Trusses - Au aws of sliding friction - ev ing resistance. ES OF SURFACES AN of areas, volumes and ma Parallel axis theorem and	s of stal /ectorial em -Equ spac criptive o USSES nalysis o quilibriu D SOL ss - Paj	ble equ l repres uilibrium ce - E conly). 5 AND of Truss m analy .IDS opus ar	ilibrium entation of Rigic quivalen FRICTI ses - Me ysis of s	- Mor of mo I bodi t sy ON ethod imple	of jo	s and C its and c two dir s of ints - N ems wi	Couples couples forces Perio Method o th sliding Perio oment o yration o	CO2 cds: 09 f CO3 cds: 09			
Types of sup Moment of a Scalar compo- Forces in s Equilibrium of UNIT - III Trusses - De sections - Fri friction -wedg UNIT - IV Determinatior nertia of plan area- product UNIT - V Displacement	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies STRUCTUF finition of a truction force - L e friction- Roll PROPERTI n of centroid co he and areas- of inertia- ma DYNAMICS ts, Velocity an	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V noment - Varignon's theore prium of a particle in in three dimensions (Desc RAL ANALYSIS OF TR uss - Simple Trusses - An aws of sliding friction - er ing resistance. ES OF SURFACES AN of areas, volumes and ma Parallel axis theorem and ss moment of inertia.	s of stal /ectorial em -Equ spac criptive o USSES nalysis o quilibriu D SOL ss - Pap perpen	ble equ l repres uilibrium ce - E conly). 5 AND of Truss m analy .IDS opus ar idicular	ilibrium entation of Rigic quivalen FRICTI ses - Me ysis of s nd Guldin axis the	- Mor of mo I bodi t sy ON ethod imple	of jo system , radiu	s and C tts and c two dir s of ints - N ems wi ms - m us of gy vilinear	Couples couples forces Perio Method o th sliding Perio oment o yration o Perio	CO2 CO3 CO3 CO3 CO3 CO4 CO4 CO4			
Types of sup Moment of a Scalar compo - Forces in s Equilibrium of UNIT - III Trusses - De sections - Fri riction -wedg UNIT - IV Determination nertia of plan area- product UNIT - V Displacement Newton's law	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies STRUCTUF finition of a truction force - L e friction- Roll PROPERTI n of centroid co he and areas- of inertia- ma DYNAMICS ts, Velocity an	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V noment - Varignon's theore prium of a particle in in three dimensions (Desc RAL ANALYSIS OF TRU uss - Simple Trusses - An aws of sliding friction - en ing resistance. ES OF SURFACES AN of areas, volumes and man Parallel axis theorem and ss moment of inertia. OF PARTICLES ind acceleration, their relation	s of stal /ectorial em -Equ spac criptive o USSES nalysis o quilibriu D SOL ss - Pap perpen	ble equ l repres uilibrium ce - E only). S AND of Truss m analy IDS opus ar idicular	ilibrium entation of Rigic quivalen FRICTI ses - Me ysis of s nd Guldin axis the	- Mor of mo I bodi t sy ON ethod imple nus th orem otion	of jo system - Cur	s and C tts and c two dir s of ints - M ems wir ms - m us of gy vilinear elastic	Couples couples forces Perio Method o th sliding Perio oment o yration o Perio	CO2 CO3 CO3 CO3 CO4 CO4 CO5			
Types of sup Moment of a Scalar compo – Forces in s Equilibrium of UNIT - III Trusses - De sections - Fri friction -wedg UNIT - IV Determination nertia of plan area- product UNIT - V Displacement Newton's law Lecture P	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies STRUCTUF finition of a tr ction force - L e friction- Roll PROPERTI n of centroid c te and areas- of inertia- ma DYNAMICS ts, Velocity an - Work Energ eriods: 30	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V noment - Varignon's theore prium of a particle in in three dimensions (Desc RAL ANALYSIS OF TRU uss - Simple Trusses - Au aws of sliding friction - ev ing resistance. ES OF SURFACES AN of areas, volumes and ma Parallel axis theorem and ss moment of inertia. COF PARTICLES ind acceleration, their relation y Equation of particles -Im	s of stal /ectorial em -Equ spac criptive o USSES nalysis o quilibriu D SOL ss - Pap perpen	ble equ l repres uilibrium ce - E only). S AND of Truss m analy IDS opus ar idicular	ilibrium entation of Rigic quivalen FRICTI ses - Me ysis of s ad Guldin axis the ative mo nentum	- Mor of mo I bodi t sy ON ethod imple nus th orem otion	of jo system - Cur	s and C tts and c two dir s of ints - M ems wir ms - m us of gy vilinear elastic	Couples couples forces Perio Method o th sliding Perio oment o yration o Perio bodies.	CO2 CO3 CO3 CO3 CO4 CO4 CO5			
Types of sup Moment of a Scalar compo- Forces in s Equilibrium of UNIT - III Trusses - De sections - Fri friction -wedg UNIT - IV Determination nertia of plan area- product UNIT - V Displacement Newton's law Lecture P Text Books 1. Beer, ar	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies STRUCTUF finition of a tr ction force - L e friction- Roll PROPERTI n of centroid of the and areas- of inertia- ma DYNAMICS ts, Velocity an - Work Energ eriods: 30 S ad Johnston J	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V noment - Varignon's theore prium of a particle in in three dimensions (Desc RAL ANALYSIS OF TRU uss - Simple Trusses - Au aws of sliding friction - ev ing resistance. ES OF SURFACES AN of areas, volumes and ma Parallel axis theorem and ss moment of inertia. COF PARTICLES ind acceleration, their relation y Equation of particles -Im	s of stal /ectorial em -Equ spac criptive o USSES nalysis o quilibriu D SOL ss - Pap perpen	ble equ l repres uilibrium ce - E only). 5 AND of Truss m analy .IDS opus ar idicular	ilibrium entation of Rigic quivalen FRICTI ses - Me ysis of s ad Guldin axis the ative mo nentum cal Per	- Mor of mo I bodi t sy ON ethod imple hus th orem btion -Impa	of jo system - Cur ct of	s and C its and f two dir s of ints - M ems wir ms - m us of gy vilinear elastic Tot	Couples couples forces Perio Method o th sliding Perio oment o yration o Perio bodies.	CO2 CO3 CO3 CO3 CO4 CO4 CO4 CO5 CO5 CO5			
Types of sup Moment of a Scalar compo- Forces in s Equilibrium of UNIT - III Trusses - De sections - Fri riction -wedg UNIT - IV Determination nertia of plan area- product UNIT - V Displacement Newton's law Lecture P Text Books 1. Beer, ar 11th Edi 2. J.L. Mer	EQUILIBRI ports and the force about a onents of a m space -Equilit f Rigid bodies STRUCTUF finition of a tr ction force - L e friction- Roll PROPERTI n of centroid of the and areas- of inertia- ma DYNAMICS ts, Velocity an - Work Energ eriods: 30 s nd Johnston J tion, 2016.	UM OF RIGID BODIES ir reactions -requirements point and about an axis -V boment - Varignon's theore orium of a particle in in three dimensions (Desc RAL ANALYSIS OF TRU uss - Simple Trusses - Au aws of sliding friction - ea ing resistance. ES OF SURFACES AN of areas, volumes and man Parallel axis theorem and ss moment of inertia. COF PARTICLES and acceleration, their relat y Equation of particles -Im Tutorial Periods: 15 r. E.R. "Vector Mechanics aridge, Engineering Volum	s of stal /ectorial em -Equ space criptive of USSES nalysis of quilibriu D SOL ss - Pay perpen ationship pulse a	ble equ l repres uilibrium ce - E only). 5 AND of Truss m analy .IDS opus ar dicular	ilibrium entation of Rigic quivalen FRICTI ses - Me ysis of s ad Guldin axis the ative mo nentum cal Per	- Mor of mo I bodi t sy ON ethod imple hus th orem otion -Impa iods:	of jo systeme - Cur ct of ill Ec	s and C tts and c two dir s of ints - M ems wir ms - m us of gy vilinear elastic Tot	Couples couples forces Perio Method o th sliding Perio oment o yration o Perio bodies. tal Perio	CO2 CO3 CO3 CO3 CO3 CO3 CO4 CO4 CO4 CO5 CO5 CO5 CO5 CO5 Vt Ltd.,			

Re	ference Books
1.	Arthur P. Boresi and Richard J. Schmidt, "Engineering Mechanics: Statics and Dynamics", Thomson Asia
2.	Private Limited, Singapore, 2010.
3.	D.P.Sharma "Engineering Mechanics", Dorling Kindersley India Pvt. Ltd, New Delhi, 2010
4.	S.Rajasekaran, Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt., Ltd., 2012.
5.	S.S.Bhavikatti and K.G. Rajashekarappa, Engineering Mechanics, New Age International(P) Ltd, New Delhi, 7th Edition, 2019.
We	b References
1.	http://nptel.iitm.ac.in/video.php?subjectId=112103108

- http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/Engineeringmechanics/Table of Contents.html
- 3. https://nptel.ac.in/courses/112/106/112106286/
- 4. https://www.coursera.org/learn/engineering-mechanics-statics
- 5. https://nptel.ac.in/courses/122/104/122104014/

COs/POs/PSOs Mapping

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	2	2	3	-	-	-	-	-	-	-	1	2	-	2
2	3	2	2	3	-	-	-	-	-	-	-	1	2	-	2
3	3	2	2	3	-	-	-	-	-	-	-	1	2	-	2
4	3	2	2	3	-	-	-	-	-	-	-	1	2	-	2
5	3	2	2	3	-	-	-	-	-	-	-	1	2	-	2

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Methods

		Conti	nuous Assessi	(N	End Semester	Total	
Assessment	CAT 1	CAT 2	Model Exam	Assignment*	Attendance	Examination (ESE) Marks	Marks
Marks	5	5	5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department											
Semester	Second	Cour	se Ca	tegory	/ : ES		End Semester Exam Type: TE				
Course	U23CSTC01	Perio	ds / W	eek	Credit	N	laximum	Marks			
Code	023031001	L	L T P		С	CAM	ESE	ГМ			
Course Name	Programming in C	3	-	-	3	25	75	100			
	(Comme	on to All Bra	inches)								
Prerequisite	NIL										
	On completion of the course, the	BT Mapping (Highest Leve									
Course	CO1 Comprehend the basics of Co	K2									
Outcome	CO2 Illustrate the concepts of cont	rol structur	es and	loopir	ıg.		K2				
	CO3 Implement programs using an	rays and fu	unction	s.			ł	(3			
	CO4 Demonstrate programs using	ł	(3								
	CO5 Build the programs using Unic	K3									

UNIT-I	INTRO	DUCTION							Periods	: 09
Generatio	n and Cla	assification	of Comp	outers - E	Block Diagra	m of a Comp	uter –Categoi	ries of S	oftware –	201
						0				

Network Structure - Number System – Binary – Decimal – Conversion – Algorithm – Pseudo code – Flow Chart. Periods: 09

UNIT-II **C PROGRAMMING BASICS**

CO2 Introduction to 'C' Programming – Basic structure of a 'C' program – compilation and linking processes - Constants, Variables - Data Types - Expressions using operators in 'C' - Managing Input and Output operations – Decision Making and Branching – Looping statements.

UNIT-III **ARRAYS AND FUNCTIONS**

Arrays – Initialization – Declaration – One dimensional and Two dimensional arrays. String- String CO3 operations - String Arrays. Simple programs- sorting- searching - matrix operations- Function definition of function – Declaration of function – Pass by value – Pass by reference – Recursion

UNIT-IV STRUCTURE AND POINTERS

CO4 Structure Introduction – Structure definition – Structure declaration – Structure within a structure –Self Referential Structure. Pointers - Definition – Initialization – Pointers arithmetic – Pointers and arrays -Pointer to Function – Pointer and Structure- Simple programs.

UNIT-V UNIONS AND FILES Union Introduction - Programs Using Structures and Unions – Introduction to File - File Operations - File CO5

Input and Output Functions - Random Access to Files - File System Functions - Command Line Arguments- Storage Classes - Pre-Processor Directives- Dynamic Memory Functions.

	Lecture Periods: 45	Tutorial Periods:	Practical Periods: -	Total Periods: 45	
--	---------------------	-------------------	----------------------	-------------------	--

Text Books

.

- 1. Balagurusamy. E, "Programming in ANSI C", Tata McGraw Hill, 8thEdition, 2019.
- 2. YashvantKanetkar, "Let us C", BPB Publications, 16th Edition, 2017
- 3. Herbert Schildt," C: The Complete Reference", McGraw Hill, FourthEdition, 2014

Reference Books

- 1. Vikas B. Agarwal Jyoti P. Mirani, "Computer Fundamentals, Nirali Prakashan Aug-2019,
- 2. Ashok N Kamthane, "Computer Programming", Pearson education, Second Impression, 2012.
- 3. VikasVerma, "A Workbook on C ", Cengage Learning, Second Edition, 2012.
- 4. P.Visu, R.Srinivasan and S.Koteeswaran, "Fundamentals of Computing and Programming", Fourth Edition, Sri Krishna Publications, 2012.
- 5. PradipDev, ManasGhoush, "Programming in C", Second Edition, Oxford University Press, 2011.

D - --' - 1 - 00

Periods: 09

Periods: 09

Periods: 09

- 1. https://www.programiz.com/c-programming
- 2. https://www.geeksforgeeks.org/c-language-set-1-introduction/
- 3. https://www.tutorialspoint.com/cprogramming
- 4. https://www.assignment2do.wordpress.com/.../solution-programming-in-ansi-c
- 5. https://nptel.ac.in/courses/106/104/106104128/

COs/POs/PSOs Mapping

	Program Outcomes (POs)													
P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
2	1	-	-	3	-	-	-	-	-	-	-	3	-	3
2	1	-	-	3	-	-	-	-	-	-	-	3	-	3
3	2	1	1	3	-	-	-	-	-	-	-	3	-	3
3	2	1	1	3	-	-	-	-	-	-	-	3	-	3
3	2	1	1	3	-	-	-	-	-	-	-	3	-	3
	PO1 2 2 3 3 3	PO1 PO2 2 1 2 1 3 2 3 2 3 2 3 2	PO1 PO2 PO3 2 1 - 2 1 - 3 2 1 3 2 1 3 2 1 3 2 1	PO1 PO2 PO3 PO4 2 1 - - 2 1 - - 3 2 1 1 3 2 1 1	PO1 PO2 PO3 PO4 PO5 2 1 - - 3 2 1 - - 3 3 2 1 1 3 3 2 1 1 3 3 2 1 1 3 3 2 1 1 3 3 2 1 1 3	PO1 PO2 PO3 PO4 PO5 PO6 2 1 - - 3 - 2 1 - - 3 - 3 2 1 1 3 - 3 2 1 1 3 - 3 2 1 1 3 - 3 2 1 1 3 - 3 2 1 1 3 -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 2 1 - - 3 - - 2 1 - - 3 - - 3 2 1 1 3 - - 3 2 1 1 3 - - 3 2 1 1 3 - - 3 2 1 1 3 - - 3 2 1 1 3 - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 2 1 - - 3 - - - 2 1 - - 3 - - - 2 1 - - 3 - - - 3 2 1 1 3 - - - 3 2 1 1 3 - - - 3 2 1 1 3 - - - 3 2 1 1 3 - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 2 1 - - 3 - - - - 2 1 - - 3 - - - - 2 1 1 3 - - - - 3 2 1 1 3 - - - - 3 2 1 1 3 - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 2 1 - - 3 - - - - - 2 1 - - 3 - - - - - 2 1 - - 3 - - - - - 3 2 1 1 3 - - - - - 3 2 1 1 3 - - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 2 1 - - 3 - <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 1 - - 3 -</th> <th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 2 1 - - 3 - - - - - 3 3 - - - - - 3 3 - - - - - 3 - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - 3 - - - - - 3 3 2 1 1 3 <t< th=""><th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 2 1 - - 3 - - - - - - 3 - 2 1 - - 3 - - - - - - 3 - 2 1 - - 3 - - - - - - 3 - 3 2 1 1 3 - - - - - - 3 - 3 2 1 1 3 - - - - - 3 - 3 2 1 1 3 - - - - - 3 - 3 2 1 1 3 - - - - - 3 -</th></t<></th>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 1 - - 3 -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 2 1 - - 3 - - - - - 3 3 - - - - - 3 3 - - - - - 3 - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - - - - - 3 - 3 - - - - - 3 3 2 1 1 3 <t< th=""><th>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 2 1 - - 3 - - - - - - 3 - 2 1 - - 3 - - - - - - 3 - 2 1 - - 3 - - - - - - 3 - 3 2 1 1 3 - - - - - - 3 - 3 2 1 1 3 - - - - - 3 - 3 2 1 1 3 - - - - - 3 - 3 2 1 1 3 - - - - - 3 -</th></t<>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 2 1 - - 3 - - - - - - 3 - 2 1 - - 3 - - - - - - 3 - 2 1 - - 3 - - - - - - 3 - 3 2 1 1 3 - - - - - - 3 - 3 2 1 1 3 - - - - - 3 - 3 2 1 1 3 - - - - - 3 - 3 2 1 1 3 - - - - - 3 -

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Methods

		Cont	inuous Assess	ment Marks (CA	M)	End		
Assessment	ment CAT 1 CA		Model Exam	Assignment*	Attendance	Semester Examination (ESE) Marks	Total Marks	
Marks	5	5	5	5	5	75	100	

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

ECE	Progr	amme	: B. Te e	ch.			
II	Cours	se Cat	egory:	PC ^{*Er} Typ	nd Seme be: TE	ster Ex	am
	Perio	ds/We	ek	Credit	Maximu	um Marl	kS
023EC1202	L	Т	Ρ	С	CAM	ESE	ТМ
Electron Devices	3	-	-	3	25	75	100
	II U23ECT202	II Cours U23ECT202 Perio	II Course Cate U23ECT202 Periods/We L T	II Course Category: U23ECT202 Periods/Week L T P	II Course Category: PC *Er Typ U23ECT202 Periods/Week Credit	II Course Category: PC Type: TE U23ECT202 II Periods/Week Credit Maximu L T P C CAM	II Course Category: PC *End Semester Ex. Type: TE U23ECT202 Periods/Week Credit Maximum Marl L T P C CAM ESE

Prerequisite	Mathe	Mathematics and Physics											
	On co	mpletion of the course, the students will be able to	BT Mapping (Highest Level)										
	CO1	diodes with its applications.											
Course Outcome	CO2	Summarize the working principle and characteristics of BJTs and its various configurations.	K2										
	CO3	Interpret the working principle and characteristics of JFET and MOSFETs.	K2										
	CO4	Explain the characteristic of Special Semiconductor devices and other power devices.	K1										
	CO5	Discuss the operation of Rectifiers and Regulators.	К2										

UNIT-I SEMICONDUCTOR DIODES

Diode: PN Junction Diode, Resistance Levels, Diode Equivalent Circuits, Transition and Diffusion Capacitance, Reverse Recovery Time, Zener Diodes, Point - Contact Diode. Diode Applications - Series Diode Configurations - Parallel and Series-Parallel Configurations - Clippers - Clampers - Voltage-Multiplier Circuits.

UNIT- II BIPOLAR JUNCTION TRANSISTORS

BJT: Construction and operation of NPN and PNP transistors- Current equations, Types of CO2 Configurations - CE, CB, CC - Early Effect. Hybrid Equivalent model, Ebers Moll Model.

UNIT- III FIELD EFFECT TRANSISTORS

FET: JFETs - Construction and Characteristics, - Pinch off voltage MOSFET- Characteristics-Threshold voltage -Channel length modulation, D-MOSFET, E-MOSFET-Characteristics – ComparisonCO3 of MOSFET with JFET, NMOS, PMOS, CMOS.

UNIT- IV SPECIAL SEMICONDUCTOR DEVICES

Metal-Semiconductor Junction- Schottky barrier diode, Varactor diode, Tunnel diode, Dual-Gate MOSFET, FINFET, MESFET, PINFET, CNTFET, Gallium Arsenide device. Power Devices CO4 Construction, operation and applications of UJT, SCR, DIAC, TRIAC

UNIT- V APPLICATIONS OF SEMICONDUCTOR DEVICES

Rectifiers and Filters: Half wave, Full wave and bridge rectifier, Ripple factor calculation for C, L, LC and CLC filter. Regulators: Voltage regulators, Shunt voltage regulator, Series voltage regulator, short circuit CO5 protection circuit, Current limiting circuit, Fold back limiting, switching regulator

Lecture Periods: 45	Tutorial Periods: -	Practical Periods: -	Total Periods: 45
Textbooks			

- 1. Salivahanan. S, Suresh Kumar. N, Vallavaraj.A, "Electronic Devices and circuits," Fifth Edition, Tata McGraw-Hill, 2012
- 2. Robert L. Boylestad, "Electronic Devices and Circuit Theory," Pearson, 11th edition 2015
- 3. David A. Bell," Electronic devices and circuits," Oxford University higher education, 5th edition 2008

Reference Books

- 1. Sedra and Smith, "Microelectronic Circuits", Oxford University Press, 5th Edition, 2005.
- 2. Donald A Neaman, "Semiconductor Physics and Devices,"4th edition, McGraw Hill Education India Private Ltd., 2011.
- 3. Thomas L. Floyd, "Electronic devices" Conventional current version, Pearson prentice hall, 10th Edition, 2017.
- 4. Balbir Kumar, Shail.B. Jain, "Electronic devices and circuits" PHI learning private limited, 2nd edition. 2014.

Periods: 09

Periods: 09

Periods: 09

Periods: 09

Periods: 09

- 5. J. Millman, C. Halkias and Chetan D. Parikh, "Integrated Electronics" Tata McGraw Hill, 2nd edition 2010
- 6. Muhammed H. Rashid, "Power Electronics", Pearson Education/PHI, 2004.

- 1. https://www.electrical4u.com/diode-working-principle-and-types-of-diode/
- 2. https://www.allaboutcircuits.com/video-tutorials/transistors/
- 3. https://onlinelibrary.wiley.com/doi/full/10.1002/inf2.12016
- 4. https://nptel.ac.in/courses/117/106/117106091/
- 5. https://www.electronics-tutorials.ws/

* TE – Theory Exam, LE – Lab Exam

COs/POs/PSOs Mapping

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
1	3	3	3	2	2	1	-	-	-	-	-	1	3	1	-		
2	3	3	2	3	2	1	-	-	-	-	-	1	3	1	-		
3	3	3	2	3	2	2	-	-	-	-	-	1	3	1	-		
4	3	2	3	3	2	1	-	-	-	-	-	1	3	1	-		
5	3	2	3	2	3	1	-	-	-	-	-	1	3	1	-		
6	3	2	3	2	2	1	-	-	-	-	-	1	3	1	-		

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

		Continu	End Semester	Total			
Assessment	CAT 1	CAT 2	Examination (ESE) Marks	Marks			
Marks	10		5	5	5	75	100

* Application-oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department		ECE			Pro	gramme	: B. Tec h) .					
Semester		Second Course Category End Sec Code: HS Ty							Exam				
Course Code		U23HSTC01	Period	······		Credit	Maximum Ma		ırks				
			L	T	Ρ	C	CAM	ESE	TM				
Course Name	U	niversal Human Values - II	2 (Commo	- 	- 11 D	2 ranch)	25	75	100				
Prerequisite			•	IV - I	ПD	ranciij							
	On	completion of the course, the st			e to				apping st Level)				
	CO1	applying them in their life and profession											
Course	CO2 Distinguish between values and skills, happiness and accumulation of physical facilities, the Self and the Body, Intention and Competence of an individual, etc.												
Outcomes	CO3	Analyze the value of harmonious relationship based on trust and											
	CO4	4 Examine the role of a human being in ensuring harmony in society K2											
	CO5	Apply the understanding of et for ethical life and profession.	hical cond	luct to f	orm	ulate the	e strategy	K	(2				
UNIT - I 🛛 INTR	ODU	CTION TO VALUE EDUCATIO	N					Per	iods: 06				
Education) - Ur	derst spira	Relationship and Physical I anding Value Education - Self- tions - Happiness and Prosper	exploratio	n as th	e Pr	ocess fo	or Value Ed	ducation					
JNIT - II HARI	MON	IN THE HUMAN BEING						Per	iods: 06				
the Needs of th	e Self	an being as the Co-existence of and the Body-The Body as an the Self with the Body-Program	Instrumer	nt of the	Sel	f-Unders	tanding Ha						
JNIT - III HARI	MON	IN THE FAMILY AND SOCIE	TY					Per	iods: 06				
'Respect' - as	the F	ly - Basic Unit of Human Interac Right Evaluation - Other Feelin ony in the Society-Vision for the	ngs, Justi	ce in H	luma	an-to-Hu							
JNIT - IV HARI	MON	(IN THE NATURE / EXISTENC)E					Per	iods: 06				
	ur Ore	nony in the Nature-Interconne ders of Nature - Realizing Ex ny in Existence											
PROI	FESS	IONS OF THE HOLISTIC						Per	iods: 06				
Humanistic Edu Professional Eth	icatio ics-Ho es for	of Human Values - Definitive n, Humanistic Constitution a blistic Technologies, Production Transition towards Value - base 30 Tutorial Periods: -	and Univ Systems ed Life and	ersal I and Ma	Hum inag ssior	nan Orc ement M า	ler-Compe lodels-Typ	tence i	n e CO:				

Text Book

1.	R. R. Gaur, R. Asthana, G. P. Bagaria, "A Foundation Course in Human Values and Professional Ethics",	
	Excel Books, 2 nd Revised Edition, New Delhi, 2019.	

Reference Books

- A Nagraj, Jeevan Vidya Prakashan, Amarkantak, "Jeevan Vidya: EkParichaya", 2013.
 A.N. Tripathi, "Human Values", New Age International Publishers, New Delhi, 3rd Edition, 2019.
 Annie Leonard, "The Story of Stuff", Free Press, Reprint Edition, 2011.
- 4. Mohandas Karam chand Gandhi, "The Story of My Experiments with Truth Mahatma Gandhi Autobiography", Finger print Publisher, 2009.
- 5. E. F Schumacher, "Small is Beautiful", Vintage Publisher, 1993.

- 6. Cecile Andrews, "Slow is Beautiful", New Society Publishers, 2006.
- J C Kumarappa, "Economy of Permanence", Sarva Seva Sangh Prakashan, 2017.
 Pandit Sunderlal, "Bharat Mein Angreji Raj", Prabhat Prakashan Publisher, 2021.
- 9. Dharampal, "Rediscovering India", Stosius Inc/Advent Books Division Publisher, 1983.
- Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule", Gyan Publishing House, 2023.
 Maulana Abdul Kalam Azad, "India Wins Freedom", Orient BlackSwan Publisher, 1st Edition, 1988.
- 12. Life of Vivekananda, "Romain Rolland (English)", Advaita Ashrama Publisher, India, 4th Edition, 2010.
- 13. Mahatma Gandhi, "Romain Rolland (English)", Srishti Publishers & Distributors, 2020.

- 1. https://www.uhv.org.in/uhv-ii
- 2. http://www.storyofstuff.com
- 3. https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw
- 4. https://fdp-si.aicte-india.org/8dayUHV download.php
- 5. https://www.youtube.com/watch?v=8ovkLRYXIjE

COs/POs/PSOs Mapping

COs		Program Outcomes (POs) O1 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												Program Outcomes (POs) Program Specific Outcomes (POs)					
	P01													PSO2	PSO3				
1	-	-	-	-	-	2	3	2	2	-	-	3	-	-	-				
2	-	-	-	-	-	2	3	2	2	-	-	3	-	-	-				
3	-	-	-	-	-	3	3	2	2	-	-	3	-	-	-				
4	-	-	-	-	-	2	3	2	2	-	-	3	-	-	-				
5	-	-	-	-	-	2	3	2	2	-	-	3	-	-	-				

Correlation Level: 1 – Low, 2 – Medium, 3 – High

Evaluation Methods

		Contin	uous Asses	sment Marks (C	AM)	End	
Assessment	CAT 1 CAT 2		Model Exam	Assignment*	Attendance	Semester Examination (ESE) Marks	Total Marks
Marks	10		5	5	5	75	100

* Application oriented / Problem solving / Design / Analytical in content beyond the syllabus

Department	English	English Programme: B.Tech.										
Semester	Second	Cou	rse Cat	egory:	HS		nester Exam ype: TE					
		Pe	riods/W	/eek	Credit	M	aximum Marks					
Course Code	U23ENBC02	L	Т	Р	С	CAM	ESE	ГМ				
Course Name	Communicative English - II	50	100									
	(Common to ALL E	Branches	except	t CSBS)							
Prerequisite	Basics of English Language											
	On completion of the course, the st	udents w	vill be a	able to				apping st Level)				
Course	CO1 Draft effective written communic	ation in p	orofess	ional er	vironment	t	K2					
Outcomes	CO2 Apply the mechanics of creative	writing w	ith pre	cision a	and clarity		k	(3				
	CO3 Acquire language skills profess through sensitizing various etique	y K2										
	CO4 Develop language fluency and g		K3									
	CO5 Express thoughts and ideas with		K2									

UNIT-I	Business Corr	espondence		Peri	ods:10
and Demi O Visit, In plaı	official Letters : App nt Training, Letter	olying for Educational / Car	nstruction, Minutes, Email Writin / Home Loans / Joining Report a quotation, Placing Order, Lett data, CV	, Leave Letter, Industria	al
UNIT-II	Functional W	riting Skills		Peri	ods:10
	clause in sentence		sation: Summary Writing and No ting, Techniques of Essay Writir		CO2
UNIT-III	Etiquettes			Peri	ods:10
		porate Etiquette, Meeting Et te, Communication Etiquette	iquette, Telephone Etiquette, Er e	nail Etiquette, Social	CO3
UNIT-IV	Communicati	on Practice-II		Peri	ods:15
List of Exer	cises				CO4
Ŭ	Letter writing tips				
	•	omptu Speech, Contempora for Modes of Writing	ary Issues		
Ŭ	ferent types of lette	9			
UNIT-V		Communication-II		Peri	ods:15
Speaking: 7 Reading: F	/ideos on different Feam Presentation Phrases and Claus	5	ctice		CO5
Lectur	ePeriods:30	Tutorial Periods: -	Practical Periods:30	Total Periods	:60

Text Books

1.	PC Das,	"Letter	Writing	including	Official	and Busin	ess Letters"	', New Centra	Book Agenc	y, 2020.

Kumar, Sanjay, Pushpalatha," Communication Skills". Oxford University Press, 2018.
 Raman, Meenakshi&Sangeetha Sharma," Communication Skills", New Delhi: OUP,2018.

- 1. Sahukar, Nimeran , Bhalla, Prem,, "The book of Etiquettes and Manners".PustakMahal Publisher, New Delhi; 1st Edition 2009.
- Gerson Sharon J, Steven M. Gerson, "Technical Writing Process and Product", Pearson Education Pvt. Ltd. 3rd Edition, 2009.
- 3. Grussendorf, Marion, "English for Presentations". Oxford University Press, Oxford, 2007.
- 4. Seely John, "The Oxford Guide to Writing and Speaking", Oxford University Press, 2006.
- 5. R.C. Sharma, Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw Hill &Co.Ltd., New Delhi, 2001.

Web References

- 1. https://www.indeed.com/career-advice/finding-a-job/how-to-write-an-application-letter
- 2. https://owlcation.com/humanities/Four-Types-of-Writing
- 3. https://targetstudy.com/languages/english/paragraph-writing.html
- 4. https://www.businessnewsdaily.com/8262-email-etiquette-tips.html
- 5. https://www.youtube.com/watch?v=UOceysteljo

COs/POs/PSOs Mapping

COs					Prog	ram O	utcom	es (PO	s)					ram Spe omes (P	
	P01	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PSO1	PSO2	PSO3
1	1	-	-	-	-	-	-	-	-	3	-	1	-	-	-
2	1	-	-	-	-	-	-	-	-	3	-	1	-	-	-
3	1	-	-	-	-	-	-	-	-	3	-	1	-	-	-
4	1	-	-	-	-	-	-	-	-	3	-	1	-	-	-
5	1	-	-	-	-	-	-	-	-	3	-	1	-	-	-

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Methods

Theory							
	Contin	uous Asse	essment Mark	End Semester			
Assessment	CAT 1	CAT 2	Model Exam	Attendance	Examination (ESE) Marks	Total Marks	
	5	5	5	5	75		
Marks	20	(to be weig	ghted for 10 ma	(to be weighted for 50 marks)	60		

Practical								
Continuous / Internal E		End Semester	End Semester Internal Evaluation					
30(to be weighte	ed for 10 marks)	30	30 marks					
Listening (L)*	10	Listening (L)*	10					
Speaking(S)	5	Speaking(S)	5	40				
Reading(R)*	10	Reading(R)*	10					
Writing(W)*	5	Writing(W)*	5					

LRW components of Practical can be evaluated through Language Lab Software

Department		Mechanical	Programme : B.Tech.											
Semester		First / Second	Cou	rse Ca	tegory	ES		emester ype: LE	mester Exam /pe: LE					
Course			Periods/Week Credit				Max	Maximum Marks						
Code		U23ESPC03	L	Т	P	С	CAM	ESE	TM					
Course Name	-	NEERING GRAPHICS USING DCAD	2 1 50 50											
		(0	Comm	non to a	all Bran	ches)								
Prerequisite	Nil													
		On completion of the course, the students will be able to BT Mapping (Highest Leve												
	C 01	Familiarize with the fundament graphics.	K3											
	CO2	Perform drawing of basic geometrical constructions and multiple views K2 of objects.												
Outcomes	CO3	Visualize the isometric and perspe	ective	sections	s of simp	ole solids.		K3						
	CO4	Connect side view associate on front view. K4												
	CO5	Correlate sectional views and late solids.	eral su	rface d	evelopm	ients of v	arious	K	4					
List of Exp	erimer	its												
•		abilities of software for Drafting and	l Mode	eling – C	Coordina	ite system	ns (abso	olute, rel	ative,					
polar,	etc.) -	Creation of simple figures like poly	gon ar	nd gene	eral multi	-line figur	es.							
2. Drawii	ng a Ti	tle Block with necessary text and p	rojectio	on symt	ool.									
3. Drawii	ng 2D s	sketch by applying modify tools like	fillet,	mirror, a	array, et	с.,								
	•	t view and top view of simple solids	s like p	rism, py	yramid, o	cylinder, c	one, et	c., and						
Dimer	nsioning	g.												
5 Drawii	na fron	t view, top view and side view of oh	viacte f	rom the	aivon r	victorial vi	owe loo	Simplo	stool					

- 5. Drawing front view, top view and side view of objects from the given pictorial views (eg. Simple stool, V-block, Mixie Base).
- 6. Drawing a plan of residential building (Two bed rooms, kitchen, hall, etc.)
- 7. Drawing sectional views of prism, pyramid, cylinder, cone, etc,
- 8. Drawing lateral surface development of prism, pyramid, cylinder, cone, etc,
- 9. Drawing isometric projection of simple objects.
- 10. Creating 3D model of simple object and obtaining 2D multi-view drawings.
- 11. Note: Plotting of drawings must be made for each exercise and attached to the records written by Students.

				1
Lecture Periods: -	Tutorial Periods: -	Practical Periods: 30	Total Periods: 30	

- 1. James D. Bethune, Engineering Graphics with AutoCAD A Spectrum book 1st Edition, Macromedia Press, Pearson, 2020.
- 2. NS Parthasarathy and Vela Murali, Engineering Drawing, Oxford university press, 2015.
- 3. M.B Shah, Engineering Graphics, ITL Education Solutions Limited, Pearson Education Publication, 2011.
- 4. Bhatt N.D and Panchal V.M, Engineering Drawing: Plane and Solid Geometry, Charotar Publishing House, 2017.
- 5. Jeyapoovan T, Engineering Drawing and Graphics Using AutoCAD, Vikas Publishing House Pvt Ltd., 7th Edition, New Delhi, 2016.
- 6. C M Agrawal, Basant Agrawal, Engineering Graphics, McGraw Hill, 2012.
- 7. Dhananjay A. Jolhe, Engineering Drawing: With An Introduction To CAD McGraw Hill, 2016.
- 8. James Leach, AutoCAD 2017 Instructor, SDC Publications, 2016.

- 1. http://vlabs.iitb.ac.in/vlabs-dev/labs/mit_bootcamp/egraphics_lab/labs/index.php
- $2. \ http://www.nptelvideos.in/2012/12/computer-aided-design.html$
- 3. https://mech.iitm.ac.in/meiitm/course/cad-in-manufacturing/
- 4. https://autocadtutorials.com
- 5. https://dwgmodels.com

Program Specific Program Outcomes (POs) Outcomes (PSOs) COs **PO1** PO2 PO3 PO4 PO5 **PO6 PO7 PO8** PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 1 3 1 3 3 2 3 3 3 -------2 3 1 3 3 3 3 3 3 -------3 3 1 3 3 3 3 3 3 -------3 3 3 2 3 4 1 3 3 -------3 1 3 3 3 3 3 3 5 -----_ -

COs/POs/PSOs Mapping

Correlation Level: 1 - Low, 2 - Medium, 3 – High

Evaluation Method

	Co	ntinuous A	E. I				
Assessment	Performan cla	ce in pract asses	ical	Model	Attendence	End Semester Examination	Total Marks
	Conduction of practical	Record work	viva	Practical Examination	Attendance	(ESE) Marks	marko
Marks	15	5	5	15	10	50	100

Department		CSE Programme: B.Tech.												
Semester		II	3,						mester Exam ype: LE					
Course	Course U23CSPC01				Periods / Week Credit I									
Code			L	Т	Р	С	AM	ESE	М					
Course Name	Pro	Programming in C Laboratory 0				1	50	50	100					
		(Common t	o All Br	anches)										
Prerequisite	NIL													
	On cor	completion of the course, the students will be able to												
	C01	Implement logical formulations specific applications.		K3										
ourse	CO2	Execute C programs for simple constructs, arrays and strings.	applica	ations n	naking ı	use of ba	asic		K3					
Outcome	CO3	Experiment C programs involvin structures.		K3										
	CO4	Demonstrate applications using processing.	j seque	ntial ar	nd rando	om acce	ss file		K3					
	CO5	· · · · · · · · · · · · · · · · · · ·		K3										

List of Exercises

- 1. Write a C program to find the Area of the triangle.
- Develop a C program to read a three digit number and produce output like
 1 hundreds 7 tens 2 units For an input of 172.
- 3. Write a C program to check whether a given character is vowel or not using Switch Case statement.
- 4. Write a C program to Print the numbers from 1 to 10 along with their squares.
- 5. Demonstrate do—While loop in C to find the sum of 'n' numbers.
- 6. Find the factorial of a given number using Functions in C.
- 7. Write a C program to check whether a given string is palindrome or not?
- 8. Write a C program to check whether a value is prime or not?
- 9. Develop a C program to swap two numbers using call by value and call by reference.
- 10. Construct a C program to find the smallest and largest element in an array.
- 11. Implement matrix multiplication using C program.
- 12. Write a C program to perform various string handling functions like strlen, strcpy, strcat, strcmp.
- 13. Develop a C program to remove all characters in a string except alphabets.
- 14. Write a C program to find the sum of an integer array using pointers.
- 15. Write a C program to find the Maximum element in an integer array using pointers.
- 16. Construct a C program to display Employee details using Structures
- 17. Write a C program to display the contents of a file on the monitor screen.
- 18. Write a File by getting the input from the keyboard and retrieve the contents of the file using file operation commands.
- 19. Write a C program to create two files with a set of values. Merge the two file contents to form a single file

		Write a C prog	ram	to pass the parameter usi	ng command line arguments.
Lecture Periods:	-	Tutorial Periods:	-	Practical Periods: 30	Total Periods: 30

- 1. Zed A Shaw,"Learn C the Hard Way: Practical Exercises on the Computational Subjects You Keep Avoiding (Like C)", Addison Wesley,2016.
- 2. Anita Goel and Ajay Mittal, "Computer Fundamentals and programming in C", Pearson Education, First edition, 2011.
- 3. Maureen Sprankle, Jim Hubbard," Problem Solving and Programming Concepts," Pearson, 9th Edition, 2011.
- 4. Yashwanth Kanethkar, "Let us C", BPB Publications, 13th Edition, 2008.
- 5. B.W.Kernighan and D.M. Ritchie, "The C Programming Language", Pearson Education, 2nd Edition, 2006.

Web References

- 1. https://alison.com/course/introduction-to-c-programming
- 2. https://www.geeksforgeeks.org/c-programming-language/
- 3. http://cad-lab.github.io/cadlab_data/files/1993_prog_in_c.pdf
- 4. https://www.tenouk.com/clabworksheet/clabworksheet.html
- 5. https://fresh2refresh.com/c-programming/

COs/POs/PSOs Mapping

COs					Prog	ram O	utcom	es (PO	s)				Program Specific Outcomes (PSOs)				
	P01	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PSO1	PSO2	PSO3				
1	2	1	-	-	3	-	-	-	-	-	-	-	3	-	3		
2	2	1	-	-	3	-	-	-	-	-	-	-	3	-	3		
3	3	2	1	1	3	-	-	-	-	-	-	-	3	-	3		
4	3	2	1	1	3	-	-	-	-	-	-	-	3	-	3		
5	3	2	1	1	3	-	-	-	-	-	-	-	3	-	3		

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Methods

	Co	ntinuous	Assessi	ment Marks (CA	M)			
Assessment	Performanc cla	ce in pract Isses	ical	Model		End Semester	Total	
	Conduction of practical	Record work	viva	Practical Examination	Attendance	Examination (ESE) Marks	Marks	
Marks	15	5	5	15	10	50	100	

Department		ECE	Progra	mme: B.	Tech.					
Semester		II	Course Category : PC *End Semester Exam Type: LE							
Course Code		U23ECP202	Periods	s/Week	ſ	Credit	Maximu	m Marks	\$	
			L	Т	Р	C	CAM	ESE	ТМ	
Course Name	E	Electron Devices Laboratory	-	-	2	1	50	50	100	
Prerequisite	Math	nematics and Physics								
	On co	ompletion of the course, the stud	ents will I	oe able t	0				BT Leve	
	of various	s semico	nductor	diodes			K4			
Course CO2 Inspect the Input -Output Ch			acteristics	of vario	us confi	guratior	ns of BJT	•	K4	
Outcome	of JFET a	nd MOS	FET				K4			
	CO4 Illustrate the electrical characteristics SCR and UJT							K4		
	CO5	Predict the diodes used for Rec Gates verification	ctifiers, Vo	oltage re	gulators	s, Clippe	ers and L	ogic	К3	
List of Exper	iment	s:								
List of Lab Ac	tivities	and Experiments								
1. V-I ch	aracte	eristics of semiconductor diodes								
i)		PN Junction diode								
ii)		Point contact diode								
iii	,	Zener diode								
2. Chara		tics of BJT in CB configuration								
i)		Determination of input and outp								
ii)		Determination of voltage gain, c	urrent ga	in, input	and out	put resi	stances f	rom the		
3. Chara		characteristics tics of BJT in CE configuration								
		Determination of input and outp	ut charac	torictics						
i) ii)		Determination of voltage gain, c			and out	nut resi	stances f	rom the		
")		characteristics	unoni ya	ni, niput		Put 1631	510110631			
4. Chara		tics of JFET								
i)		Determination of output and tran	nsfer cha	racteristi	cs					
ii)		Determination of pinch-off voltage				charact	teristics			
5. Chara	acterist	tics of MOSFET								
i)		Determination of output and tran	nsfer cha	racteristi	cs					
ii)		Determination of pinch-off voltage	ge, rd, gn	n and µ f	rom the	charact	teristics			
6. Chara	acterist	tics of UJT and SCR.								
7. Chara	acterist	tics of photonic devices								
i)		Determination of V-I characteris	tics of LE	D						
ii)		Determination of V-I and intensi	ty charac	teristics	of photo	otransist	or			
8. Rectif	iers ar	nd Voltage Regulators								
i)		Determination of ripple factor fo	r different	t types o	f rectifie	rs with a	and witho	out filters		
::)		Voltage regulation observatoristic	on of the a	shunt on	rioc on		ulatore			

- Voltage regulation characteristics of the shunt, series and IC regulators ii)
- 9. Clipper circuits using diodes: Positive, negative, biased and combinational clippers.
- 10. Switching circuit

i)

- AND and OR logic gates using diodes.
- ii) NOT gate using transistor

Reference Books

- Sedra and Smith, "Microelectronic Circuits," Oxford University Press, 5th Edition, 2005.
 Donald A Neaman, "Semiconductor Physics and Devices,"4th edition, McGraw Hill Education India Private Ltd., 2011.

- Thomas L. Floyd, "Electronic devices" Conventional current version, Pearson prentice hall, 10th Edition, 2017.
- 4. Balbir Kumar, Shail.B. Jain, "Electronic devices and circuits" PHI learning private limited, 2nd edition, 2014.
- 5. J. Millman, C. Halkias and Chetan D. Parikh, "Integrated Electronics" Tata McGraw Hill, 2nd edition 2010
- 6. Muhammed H. Rashid, "Power Electronics", Pearson Education/PHI, 2004.

- 1. https://www.industrial-electronics.com/experiments_0.html
- 2. http://www2.ece.ohio-state.edu/ee327/
- 3. http://www.vlab.co.in/broad-area-electronics-and-communications.
- 4. https://www.electrical4u.com/diode-working-principle-and-types-of-diode/
- 5. https://www.allaboutcircuits.com/video-tutorials/transistors/

* TE – Theory Exam, LE – Lab Exam

COs/POs/PSOs Mapping

COs		Program Outcomes (POs)								Program Specific Outcomes (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
1	3	1	3	2	2	-	-	-	-	-	-	1	3	1	-
2	3	1	2	2	2	-	-	-	-	-	-	1	3	1	-
3	3	2	3	2	2	-	-	-	-	-	-	1	3	1	-
4	3	2	3	2	2	-	-	-	-	-	-	1	3	1	-
5	3	2	3	2	2	-	-	-	-	-	-	1	3	1	-

Correlation Level: 1 - Low, 2 - Medium, 3 - High

Evaluation Method

	Co	ontinuous A	Assessi	ment Marks (CA	M)	End		
Assessment	Performance in practical classes			Model Practical	Attendance	Semester Examination	Total Marks	
	Conduction of practical	Record work	viva	Examination	Attendance	(ESE) Marks		
Marks	15	5	5	15	10	50	100	

Department		ECE	Programme: B.Tech.									
Semester		II	Cours	se Ca	tegor	y : MC	End Semester Exam Type: -					
								aximum Marks				
Course Code U23ECM202 L T P C CAM								ESE	ΤM			
Course Name	Sports Yoga or NSS/NCC002Non- Credit100							-	100			
Prerequisite				-								
	On cor	mpletion of the course, the s	tudents	will be	e able	to		BT Ma (Highest				
Course	CO1 Practice Physical activities and Hatha Yoga focusing on yoga for strength, flexibility and relaxation.								K2			
Outcomes	CO2 Understand basic skills associated with yoga and physical activities including strength and flexibility, balance and coordination.								K2			
	CO3	O3 Develop understanding of psychological problems associated with K2 age and lifestyle.										
	CO4	CO4 Recognize the importance of national service in community development.										
I	CO5	Convert existing skills into s	socially r	elevai	nt life s	skills.		Kź	2			
UNIT-I INTRODU	JCTION	TO PHYSICAL EDUCATIO	N					Period	ls: 06			
Definition, Aims ar	nd Objec	tives of Physical Education ·	- Changi	ng tre	nds in	Physical	Educatio)n				
Physical Fitness Components of P	s, Wellr hysical f	ness and Lifestyle: Impo itness -Components of Hea through Lifestyle Change - (ortance alth relat	of Pl ed fiti	nysica ness -	I Fitness Compor	and W	/ellness -				
UNIT-II YOGA AI	ND LIFE	STYLE						Period	ls: 06			

Importance of Yoga - Elements of Yoga - Introduction - Asanas, Pranayama, Meditation and Yogic Kriyas - Yoga for concentration and related Asanas (Sukhasana, Tadasana, Padmasana and Shashankasana) - Relaxation Techniques for improving concentration - Yog-nidra. Asanas as preventive measures – Hypertension – Obesity - Back Pain-Diabetes - Asthema.

UNIT-III TRAINING AND PLANNING IN SPORTS

Periods: 06

Training - Warming up and limbering down-Skill, Technique and Style - Objectives of Planning – Tournament - Knock-Out, League/Round Robin and Combination.

Psychology and Sports - Important of Psychology in Physical Education and Sports - Differentiate Between Growth and Development - Adolescent problems and their Management - Emotion: Concept, Type and Controlling of emotions - Concepts and Types of Aggressions in Sports -Psychological benefits of exercise - Anxiety and Fear and its effects on Sports Performance -Motivation, its type and techniques - Understanding Stress and Coping strategies

UNIT-IV INTRODUCTION TO NATIONAL SERVICE SCHEME

Periods: 06

Orientation of NSS volunteers: History, motto, symbol, awards, structure and activities of NSS - Days of National and International Importance - Sensitizing about the thrust areas and awareness activities - Importance of tree plantation and voluntary blood donation - The role of SHGs and NGOs in community development – CSR - Life skills and youth development-extension activities in HEIs - various clubs and schemes like RRC, ELC, YRC, UBA, SBA, etc.,

UNIT-V COMMUNITY ISSUES AND THE USE OF TECHNOLOGY Periods: 06 Common Problems of rural India - Technology development and its suitability – Sustainability - Value addition to agricultural products - Service learning and youth volunteering – Shramdaan - Campus cleaning - Field visit to nearby communities - village survey - Initiatives to clean and green environment - preservation of water bodies in adopted villages. CO5

	Lecture Periods: -	Tutorial Periods: -	Practical Periods: 30	Total Periods: 30	
--	--------------------	---------------------	-----------------------	-------------------	--

- Brar Ajmer Singh, Gill Jagtar Singh, Bains Jagdish, "Modern Textbook of Physical Education Health and Sports- I", Kalyani Publishers, 6th Edition, 2014
- 2. B.K.S. Iyengar, "Light on Yoga: The Definitive Guide to Yoga Practice", Thorsons Publishers, Thorsons Classics edition, 2015
- 3. Joseph, Siby K, Mahodaya, "Bharat Essays on Conflict Resolution", Institute of Gandhian Studies Publishers, 2007
- 4. Barman Prateeti , Goswami, "Document on Peace Education", Triveni Akansha Publishing House, New Delhi, 2009
- 5. Prof R.B.S. Verma, "Field Work Practicum in Social Work-Emerging Concerns", Rapid Publisher, Lucknow, 2020
- Sibereisen, K, Richard M, "Lerner Approaches to Positive Youth Development", Sage Publications, New Delhi, 2007
- 7. Hoshiar Singh, "Administration of Rural Development in India", Sterling Publisher, the University of Michigan, 2009

Web References

- 1. http://www.thebetterindia.com/140/national-service-scheme-nss
- 2. http://en.wikipedia.org/wiki/national-service-scheme 19=http://nss.nic.in/adminstruct
- 3. http://nss.nic. in
- 4. http://socialworknss.org/about.html
- 5. Young Journal on Youth published by SAGE: http://you.sagepub.com

Evaluation methods

Accossmont		Continuous Ass	essment Marks (CAM)	Total Marks
Assessment	Attendance	MCQ Test	Presentation / Activity / Assignment	
Marks	10	30	60	100